탈착 등온식을 이용한 토양 중 인산 완충력 측정

Measurement of Phosphorus Buffering Power in Various Soils using Desorption Isotherm

  • Lee, Jin-Ho (Institute of Agricultural Science and Technology, Chonbuk National University) ;
  • Doolittle, James J. (Department of Plant Science, Northern Biostress Laboratory, South Dakota State University)
  • 투고 : 2004.04.13
  • 심사 : 2004.05.18
  • 발행 : 2004.08.30

초록

인산은 식물 영양 물질과 환경 오염원으로 대비되는 불질이의로, 인산의 탈착 반응에 대한 연구는 농업과 환경에 관련된 토양 중에서 인산의 작용기작을 이해하기 위하여 필수적이다. 본 연구는 인산 탈착 유효량(Q)과 가용량(I)의 매개 변수($Q_{max}$$I_0$)와 관련된 인산 완충력을 측정하고, 그 매개 변수와 토양 특성간의 상관관계에 대한 특징을 조사하였다. 토양은 인산 무처리 표본과 $KH_2PO_4$ 용액을 사용하여 $100mg\;P\;kg^{-1}$의 농토를 처리한 표본을 이용하였다. 인산 탈착 Q/I 곡선은 음이온교환수지비즈법을 사용하여 얻었고, 실험 방정식 ($Q=aI^{-1}+bIn(I+1)+c$)을 이용하여 탈착 곡선을 설명하였다. 유효 인산 함량이 높은 토양 (${\g}20mg\;kg^{-1}$ of Olsen P)에서는 인산 처리 유무와 관계 없이 인산 탈착 Q/I 곡선은 특징적인 오목형 곡선 형태를 보였으나, 유효 인산 함량이 낮은 토양 (${\lt}20mg\;kg^{-1}$ of Olsen P)에서는 인산의 추가 처리 없이는 오목형 인산 탈착 Q/I 곡선을 얻을 수 없었다. 인산 추가 처리 시, 고형의 불안정 결합형 인산량$Q_{max}$)과 용액 내 인산량($I_0$)은 증가하였으나, $Q_{max}$$I_0$의 비율은 감소하였다. 그로 인하여, 인산의 완충력($|BP_0|$)을 나타내는 인산 탈차 Q/I 곡선의 경사가 감소하였다. 유효 인산 함량이 높은 토양 중 인산 무처러 표본의 인산 완충력($|BP_0|$)은 $48\;61L\;kg^{-1}$ 인산 추가 처리 표본의 인산 완충력은 $18\;44L\;kg^{-1}$ 사이에서 나타났으며, 실험에 사용된 모든 토양에 인산을 추가 처리한 후 나타난 인산 완충력은 $14\;79L\;kg^{-1}$ 사이에서 나타났으며, 또한 $Q_{max}$ 계수는 $71.4\;173.1mg\;P\;kg^{-1}$, $I_0$ 계수는 $0.98\;3.72mg\;P\;L^{-1}$ 사이에서 다양하게 나타났다. 인산 완충력을 지배하는 $Q_{max}$$I_0$, 계수는 토양 특성 중 하나의 특정 인자와 관련된 것으로는 볼 수 없었다. 그러나, 이들 계수는 토양 pH, 점토함량, 유기물함량 빛 석회함유 여부와 복잡하게 관련되어 있다. 또한, 토양으로부터 인산의 방출 활성은 처리된 인산의 천연 불안정 인산의 탈착성에 현저히 의존하였다.

Phosphorus desorption study is essential to understanding P behavior in agricultural and environmental soils because phosphorus is considered as two different aspects, a plant nutrient versus an environmental contaminant. This study was conducted to determine soil P buffering power related to P desorption quantity intensity (Q/I) parameters, $Q_{max}$(an index of P release capacity) and $l_0$(an index of the intensity factor), and to investigate the characteristics of relationship between the P desorption Q/I parameters and the soil properties. Soil samples were prepared with treatments of 0 and $100mg\;P\;kg^{-1}$ applied as $KH_2PO_4$ solution. The P desorption Q/I curves were obtained by a procedure using anion exchange resin beads and described by an empirical equation ($Q=aI^{-1}+bln(I+1)+c$). The P desorption Q/I curves for the high available P (${\g}20mg\;kg^{-1}$ of Olsen P) soils were characteristic concave trends with or without soil P enrichment, whereas for the low available P (${\lt}20mg\;kg^{-1}$ of Olsen P) soils, the anticipated Q/I concave curves could not be obtained without a proper amount of P addition. When the soils were enriched in phosphates, the values of desorbed solid phase labile P and solution P, such as $Q_{max}$ and $I_0$ respectively, were increased, but the ratio of $Q_{max}$ versus $I_0$ was decreased. Thus, the slope of desorption Q/I curve represented as phosphorus buffering power, $|BP_0|$, is decreased. The $|BP_0|$ values of the high available P soils ranged between 48 and $61L\;kg^{-1}$ in the P untreated samples and between 18 and $44L\;kg^{-1}$ in the P enriched samples. Overall $|BP_0|$ values of both low and high available P soils treated with $l00mg\;P\;kg^{-1}$ ranged between 14 and $79L\;kg^{-1}$. The $Q_{max}$, values ranged between 71.4 and $173.1mg\;P\;kg^{-1}$, and the lo values ranged between 0.98 and $3.82mg\;P\;L^{-1}$ in the P enriched soils. The $Q_{max}$ and $I_0$ values that control the P buffering power may be not specifically related to a specific soil property, but those values were complicatedly related to soil pH, clay content, soil organic matter content, and lime. Also, phosphorus release activity, however, markedly depended on the desorbability of the applied P as well as the native labile P.

키워드

참고문헌

  1. Bache, B. W., and C. Ireland. 1980. Desorption of phosphate from soils using anion exchange resins. J. Soil Sci. 31:297-306 https://doi.org/10.1111/j.1365-2389.1980.tb02082.x
  2. Bache, B. W., and E. G. Williams. 1971. A phosphate sorption index for soils. J. Soil Sci. 22:289-301 https://doi.org/10.1111/j.1365-2389.1971.tb01617.x
  3. Barrow, N. J., and T. C. Shaw. 1977. Factors affecting the amount of phosphate extracted from soil by anion exchange resin. Geoderma 18:309-323 https://doi.org/10.1016/0016-7061(77)90039-8
  4. Barrow, N. J. 1979. The description of desorption of phosphate from soil. J. Soil Sci. 30:259-270 https://doi.org/10.1111/j.1365-2389.1979.tb00983.x
  5. Bohn, H. L., B. L. McNeal, and G. A. O'Connor. 1985. Soil chemistry. 2nd ed. Wiley-Interscience, NY, USA
  6. Borie, F., and H. Zunino. 1983. Organic matter-phosphorus associations as a sink in P-fixation processes in allophanic soils of Chile. Soil Biol. Biochem.15:599-603 https://doi.org/10.1016/0038-0717(83)90056-1
  7. Brewster, J. L., A. N. Gancheva, and P. H. Nye. 1975. The determination of desorption isotherms for soil phosphate using low volumes of solution and an anion exchange resin. J. Soil Sci. 26:364-377 https://doi.org/10.1111/j.1365-2389.1975.tb01961.x
  8. Fox, R. L., and E. J. Kamprath. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci. Soc. Am. Proc. 34:902-906 https://doi.org/10.2136/sssaj1970.03615995003400060025x
  9. Doolittle, J. J., and J. H. Lee. 1995. The determination of phosphorus quantity-intensity relationships in sixteen South Dakota soils. Proceedings of the South Dakota Academy of Science. 74:123-132
  10. Doolittle, J. J., and J. H. Lee. 1996. Comparison of two methods for measuring soil phosphorus desorption quantity-intensity relationships. Proceedings of the South Dakota Academy of Science. 75:71-77
  11. Lee, J. H., and J. J. Doolittle. 2002. A proposed method for the determination of soil phosphorus desorption quantity-intensity relationships using anion-exchange membrane disks. Comm. Soil Sci. Plant Anal. 133:1941-1958
  12. Lee, J. H., and J. J. Doolittle. 2004. Determination of soil phosphorus and zinc interactions using desorption quantity-intensity relationships. Korean J. Soil Sci. Fert.37:59-65
  13. Lindsay, W. L. 1979. Chemical equilibria in soils. John Wiley & Sons, Inc., NY, USA
  14. Nagarajah, S., A. M. Posner, and J. P. Quirk. 1970. Competitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces. Nature 228:83-84 https://doi.org/10.1038/228083a0
  15. Okajima, H., H. Kubota, and T. Sakuma. 1983. Hysteresis in the phosphorus sorption and desorption process of soils. Soil Sci. Plant Nutr. 29:271-283 https://doi.org/10.1080/00380768.1983.10434628
  16. Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. p. 403-430. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA
  17. Parfitt, R. L. 1979. The availability of P from phosphate-goethite bridging complexes: Desorption and uptake by ryegrass. Plant Soil 53:55-65 https://doi.org/10.1007/BF02181879
  18. Reddy, K. R., M. R. Overcash, R. Khaled, and P. W. Westerman. 1980. Phosphorus adsorption-desorption characteristics of two soils utilized for disposal of animal wastes. J. Environ. Qual. 9:86-92 https://doi.org/10.2134/jeq1980.00472425000900010020x
  19. Raven K. P., and L. R. Hossner. 1993. Phosphorus desorption quantity- intensity relationships in soils. Soil Sci. Soc. Am. J. 57:1501-1508 https://doi.org/10.2136/sssaj1993.03615995005700060018x
  20. Raven K. P., and L. R. Hossner. 1994. Sorption and desorption quantity-intensity parameters related to plant-available soil phosphorus. Soil Sci. Soc. Am. J. 58:405-410 https://doi.org/10.2136/sssaj1994.03615995005800020024x
  21. Sample, E. C., R. J. Soper, and G. J. Racz. 1980. Reactions of phosphate fertilizers in soils. p. 263-310. In K. F. Khasawneh et al. (ed.) The role of phosphorus in agriculture. 2nd ed. ASA, CSSA, and SSSA, Madison, WI, USA
  22. Schoenau, J. J., and W. Z. Huang. 1991. Anion-exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus. Commun. Soil Sci. Plant Anal. 22:465-492 https://doi.org/10.1080/00103629109368432
  23. Sibanda, H. M., and S. D. Young. 1986. Competitive adsorption of humus acids and phosphate on goethite, gibbsite, and two tropical soils. J. Soil Sci. 37:197-204 https://doi.org/10.1111/j.1365-2389.1986.tb00020.x
  24. Stevenson, F. J. 1986. Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, Inc., NY, USA