자운영 및 보리 재배 혼입처리에 따른 벼의 생육과 수량

Paddy Rice Growth Yield as Affedted by Incorporation of Green Barley and Chinese Milkvetch

  • 손보균 (순천대학교 환경농업과학부) ;
  • 조주식 (순천대학교 환경농업과학부) ;
  • 이도진 (순천대학교 농업교육과) ;
  • 김영주 (순천대학교 환경농업과학부) ;
  • 진서영 (순천대학교 환경농업과학부) ;
  • 차규석 (광주대학교 토목환경공학부)
  • Sohn, Bo-Kyoon (Division of Environmental and Agricultural Science, Sunchon National University) ;
  • Cho, Ju-Sik (Division of Environmental and Agricultural Science, Sunchon National University) ;
  • Lee, Do-Jin (Department of Agricultural Education, Sunchon National University) ;
  • Kim, Young-Ju (Division of Environmental and Agricultural Science, Sunchon National University) ;
  • Jin, Seo-Young (Division of Environmental and Agricultural Science, Sunchon National University) ;
  • Cha, Gyu-Seok (Division of Civil and Environmental Engineering, Gwangju University)
  • 투고 : 2003.12.09
  • 심사 : 2004.05.03
  • 발행 : 2004.06.30

초록

본 연구는 벼 재배 전에 녹비작물로서 자운영과 풋베기 보리를 재배한 뒤 혼입한 조건에서 벼의 관행 재배방법을 실시하면서 완효성 비료 LCU, 수도용 복합비료 및 질소 감비 시용에 따른 녹비작물 혼입처리 효과를 검토하고자 수행하였다. 벼 이앙 전 녹비작물 재배로 생산된 지상부 신선중량은 풋베기 보리가 $668kg\;10a^{-1}$. 자운영이 $3,492kg\;10a^{-1}$로서 질소 함량으로는 각각 3.9, $17.8kg\;10a^{-1}$이 논에 투입된 것으로 환산되었다. 녹비작물 재배 혼입처리로 인하여 유수형성기와 출수기 벼의 초장과 분얼수가 증가하였으며 수량구성요소 중 수당입수의 증강에는 영향하지 않았으나 화학비료 처리량이 많아질수록 입수가 증가하였다. 또한 등숙율은 녹비작물 혼입처리와 함께 화학비료 처리량이 많을수록 감소하는 경향을 보였으나 자운영 재배 혼입조건의 질소 감비처리에서는 수량 구성요소인 수수와 입수 확보가 가능하였다. 정조수량은 녹비작물 무재배 조건의 표준시비구의 수량 $494kg\;10a^{-1}$를 수량지수 100으로 환산하였을 때 녹비작물 무재배구의 LCU와 복합비료 추천 시비량구의 수량이 표준시비구와 비슷하였으며, 자운영 재배 혼입조건에서는 무비료구를 제외한 모든 처리에서 1-5% 이상의 수량이 증가하였고 수비질소 30% 감량 처리에서도 표준시비구의 수량을 확보할 수 있었다. 벼 생육기간중 토양내 $NH_4-N$ 함량은 녹비작물 무재배 조건에 비해 재배 조건에서 높았다. 또한 녹비작물 무재배 조건의 $NH_4-N$ 함량은 8월 5일 조사 시부터 급격히 감소하여 수확기에는 $2.7-5.7mg\;kg^{-1}$까지 감소하였으나 녹비작물 재배 조건에서는 완만한 감소로서 풋베기 보리와 자운영 재배 혼입조건에서는 10월에도 각각 4.8-10.4, $5.5-9.9mg\;kg^{-1}$의 범위로 유지되었다. 수확기의 벼 경엽과 현미 중 질소함량 및 흡수량은 비료처리 수준과 함께 증가하였고, 녹비작물 무재배 조건보다 녹비작물 재배 혼입조건에서 식물체의 질소 함량 및 흡수량이 높은 것으로 나타났다. 수확 후 공시토양의 관입 저항경도는 녹비작물 무재배 조건이 자운영이나 풋베기 보리를 재배하여 혼입시킨 처리에 비해 토심 10 cm와 15 cm 깊이에서 각각 7.9 및 $10.5kgf\;cm^{-2}$로서 저항경도가 높은 것으로 나타났다.

This study was conducted to evaluate the effect of the application of green manure in the form of either green barley and Chinese milkvetch in reducing the amounts of N fertilizers and conventional fertilizers needed for paddy rice. Prior to rice transplanting, the green barley and Chinese milkvetch as a green manure produced respectively $668kg\;10a^{-1}$ and 3,492kg\;$10a^{-1}$ in fresh shoot weight basis. Calculated nitrogen content from harvested green manures was 3.9 and $17.8kg\;10a^{-1}$, respectively. Plant height and tiller number of rice increased when two kinds of green manure incorporated into soil. Above mentioned parameters also increased with increasing amounts of N fertilizers at both ear formation and heading stage of rice. Rice grain number was not affected by green manures treatment but increased when N fertilizers were applied. Although rice panicle and grain number increased with green manure treatments and fertilizer applications, whereas the percentage of ripened grain decreased. Chinese milkvetch with additional N fertilizer applications increased brown rice yield from 1 to 5% compared to rice yields in plots where non-green manure with the conventional amount of fertilizer application was applied. Rice treated with Chinese milkvetch and 30% of the conventional N fertilizer rate yielded the same as rice fertilized conventionally. During the rice growing season, $NH_4-N$ content of paddy soil was higher in green manures treatment than non-green manure one. Average $NH_4-N$ content in paddy soil drastically decreased after heading stage below $5.7mg\;kg^{-1}$ in non-green manure treated plots. While on the other, $NH_4-N$ content in soil slowly decreased in plots those were treated with green manures at harvesting stage, average $NH_4-N$ content was still greater than $5.5mg\;kg^{-1}$. Nitrogen content of rice shoot and brown rice seed was higher in green manure treatment.

키워드

참고문헌

  1. Hwang, K. N., and Y. J. Kim. 1978. Studies on soil organic matter. Effect of straw on paddy yield. p. 552-574. In Annual research report for 1977. Institute of Agricultural Technology, Office of Rural Development, Suwon, Korea
  2. Idei K., and T. Yoshino. 1972. Utilization of nitrogen in paddy field. Report of Natl. Agri. Res. Japan. 2:1-14
  3. Kai. H. 1970. Fertility and nitrogen availability of paddy soil. p. 173-178. In Studies on the soil and fertilizers in modern agriculture. Vol. 1. Soc. Sci. Soil Manure, Yokendo, Tokyo, Japan
  4. Kai, H., and K. Wada. 1979. Chemical and biological immobilization of nitrogen in paddy soils. p. 157-174. In Nitrogen and rice. IRRI, Los banos, Manila, Philippines
  5. Kawaguchi, K. 1978. Paddy field soil. p. 362-367. Kodansya. Tokyo, Japan
  6. Kim, K. S., and Y. W. Kim. 1983. Studies on the leaching of the constituents in paddy soil. III. Effects of rice straw on the leaching of the constituents in paddy soil. J. Korean Soc. Soil Sci. Fert. 16:311-317
  7. Kim, K. S., and S. S. Lim.1988. Influences of rice and bartey straw application in the rice rhizosphere. J. Korean Soc Soil Sci. Fert. 21:434-442
  8. Lee, C. S. 1986. Studies on determination of N-fertilizer rates for increasing rice yield in paddy soils. Ph. D. Thesis, Gyeongsang National University, Chinju, Korea
  9. Lee I., B. K. Yun, Y. S. Kim, I. J. Park B. H. Kim, and Y. W. Kim. 1995. Effect of organic matter application to rice yield and quality in paddy fields. p. 506-513. Chonnam RDA Report. Gwangju, Korea
  10. Lee I., H. K. Kim, B. K. Yun, B. H. Kim, and Y. W. Kim. 1996. Sustainable utilization of Chinese milkvetch by one time seeding in paddy fields. p. 613-620. Chonnam RDA Report. Gwangju, Korea
  11. Lee, S. K., S.H. Kim, J. K. Park, and S. B. An. 1983. Studies on the denitrification in the submerged paddy soil. II. The denitrification rates upon kinds of applied organic matter and levels of nitrogen fertilizer. J. Korean Soc. Soil Sci. Fert. 16:434-442
  12. Miyaguchi, T., and T. Harada. 1969. Effect of green manure extracts to fate of nitrogen, iron and phosphorous in soil. Bull. Saga Univ., Japan. 28:1-16
  13. RDA. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  14. RDA. 1995. Standard methods for agricultural experiment. Rural Development Administration, Suwon, Korea
  15. Reneau, R. B., D. F. Berry Jr., and D. C. Martens. 1990. Fate and transport of selected pollutants in soils. p. 14-44. In Proceedings of International Symp. Environ. Pollut. Agric., September 1990. Seoul National University, Seoul, Korea
  16. Shin, J. S., and Y. H. Shin. 1975. The effect of long term organic matter addition on the physico-chemical properties of paddy soil. J. Korean Soc. Soil Sci. Fert. 8:19-24
  17. Takai, Y., and Y. Kitazawa. 1975. Soil science as ecosystem. Science of Japan 45:578-585
  18. Yoo, I. S., Y. S. Kim, and C. S. Park. 1971. Studies on the rice yield and physico-chemical properties of soil in paddy fields. RDA Report. 14:1-16
  19. Yoshino, T. 1976. Utilization of $^{15}N$ to nitrogen fertility in paddy field. J. Japanese Soil Sci. Plant Nutri. (suppl.) 20:148
  20. Yun, S. G., and S. H. Yoo. 1993. Behaviour of $NO_{3-}N$ in soil and groundwater quality. Korean J. Environ. Agric. 12:281-297