Effect of Nitrogen Content of Irrigation Water and Soil EC on Lettuce Growth

토양 EC 및 관개수중 질소함량이 상추 생육에 미치는 영향

  • Lee, Gyeong-Ja (Agricultural Environment Division, Chungbuk Provincial Agricultural Research and Extension Services) ;
  • Kang, Bo-Goo (Agricultural Environment Division, Chungbuk Provincial Agricultural Research and Extension Services) ;
  • Kim, Hyun-Ju (Agricultural Environment Division, Chungbuk Provincial Agricultural Research and Extension Services) ;
  • Park, Seong-Gyu (Agricultural Environment Division, Chungbuk Provincial Agricultural Research and Extension Services)
  • Received : 2003.11.07
  • Accepted : 2004.02.09
  • Published : 2004.04.30

Abstract

A pot experiment was conducted to find out the effects of nitrogen content of irrigation water and soil EC on lettuce growth under plastic film house conditions. The square-pots with 42 x 54.5 x 22 cm in length, width and height, were filled with two different soils of different EC. Lettuce was grown with different nitrogen fertilizer application levels including non fertilization (Non-F), decrement of 50% of nitrogen fertilizer recommended by soil testing (DNFRST-50) and fertilization recommended by soil testing (FRST). Two kinds of irrigation water of different nitrogen contents, $6.6mg\;L^{-1}$ and $21.0mg\;L^{-1}$, were used for the experiment. In the low EC soil irrigated with low nitrogen water, fresh weights of lettuce were 6,733, 11,933 and $12,733kg\;ha^{-1}$ for the treatments of Non-F, DNFRST-50 and FRST, respectively. While with high nitrogen water, the yields were 9,733, 13,400 and $12,800kg\;ha^{-1}$, respectively. In the high EC soil irrigated with low nitrogen water, lettuce yields of the Non-F, DNFRST-50 and FRST treatments were 12,400, 12,867 and $10,400kg\;ha^{-1}$, respectively, and with high nitrogen irrigated water lettuce yields of the Non-F, DNFRST-50 and FRST treatments were 13,600, 14,067 and $10,733kg\;ha^{-1}$, respectively. Nitrogen uptake of lettuce from ferilizer in DNFRST-50 was higher than of FRST. Nitrogen uptake of lettuce from irrgation water was found in soils of low EC, but it was not found in soils of high EC. These results suggest that both soil EC and nitrogen content of irrigation water should be considered when we recommend the level of fertilizer application for lettuce.

토양의 EC와 관개수중 질산태 질소 함량이 상추의 생육에 미치는 영향을 구명하고자 본 시험을 수행하였다. 가로, 세로, 높이가 각각 42, 54.5, 22 cm인 사각포트에 토양 EC가 비교적 낮은 토양과 높은 토양 40 kg을 충진 시켰으며, 각각의 토양에 무비료구, 토양검정시비량의 질소 50% 감비구, 토양검정시비구를 두고 질산태 질소 함량이 각각 6.6 및 $21.0mg\;L^{-1}$인 두 가지 지하수를 관개수로 이용하여 상추를 재배하였다. EC가 낮은 토양에서 질소 함량이 낮은 지하수를 관개한 경우, 무비구, 토양검정시비량의 질소 50% 감비구 및 토양검정시비구의 상추 생산량은 각각 6,733, 11,933 및 $12,733kg\;ha^{-1}$이었고, 질소함량이 높은 지하수를 관개한 경우 무비구, 토양검정시비량의 질소 50% 감비구 및 토양검정시비구의 상추 생산량은 각각 9,733, 13,400 및 $12,800kg\;ha^{-1}$이었다. EC가 높은 토양에서 질소함량이 낮은 지하수를 관개한 경우 무비구, 토양검정시비량의 질소 50% 감비구 및 토양검정시비구의 상추 생산량은 각각 12,400, 12,867 및 $10,400kg\;ha^{-1}$이었고, 질소함량이 높은 지하수를 관개한 경우 무비구, 토양검정시비량의 질소 50% 및 토양검정시비구의 상추 생산량은 각각 13,600, 14,067, $10,733kg\;ha^{-1}$이었다. 비료에 의한 질소 흡수는 토양검정시비구보다 토양검정시비량의 질소 50% 감비구에서 더 높았다. EC가 낮은 토양에서는 관개수중의 질소가 상추에 의해 흡수 이용되었으나, EC가 높은 토양에서는 관개수에 의한 질소 공급은 없는 것으로 나타났다. 이와 같은 결과를 보면 엽채류에 대한 시비량은 토양 양분 및 관개 지하수중의 질소함량을 고려하여 결정되어야 할 것으로 사료된다.

Keywords

References

  1. Ha, H. S., Y. B. Lee, B. K. Sohn, and U. G. Kang. 1997. Characteristics of soil electrical conductivity in plastic film house located in southern part of Korea. J. Korean Soc. Soil Sci. Fert. 30:345-350
  2. Heyns, K. 1985. Nitrate-Ausgabsstoff fur die bildung von nitrit und nitrosaminen? p. 34-52. In Nieder et al. (ed.). Nitrate im grundwasser. Wiley-VCH Verlag, Weinheim, Gennany
  3. Hwang, S. W., Y. S. Kim, B. Y. Yeon, Y. J. Lee, and Y. D. Park. 1993. The effect of several desalting methods applied to vinyl house soils. RDA. J. Agri. Sci. 35:276-280
  4. James, D., A. J. Kotuby, G. Anderson, and D. Huber. 1996. Phosphorus mobility in calcareous soils under heavy manuring. J. Environ. Qual. 25:770-775 https://doi.org/10.2134/jeq1996.00472425002500040017x
  5. Jung, Y. S., and S. H. Yoo. 1975. Effect of watering on eluviation of soluble salts in the vinyl house soils. J. Korean Soc. Soil Sci. Fert. 8:53-60
  6. Kang, B. G., H. J. Kim, G. J. Lee, S. G. Park, and S. T. Suh. 2002. Economical efficiency of the sustainable agriculture direct income support system on fertilizer levels of red pepper. J. Korean Soc. Soil Sci. Fert. 35:387-394
  7. Kang, B. K., I. M. Jeong, J. J. Kim, S. D. Hong, and K. B. Min. 1997. Chemical characteristics of plastic film house soils in Chungbuk area. J. Korean Soc. Soil Sci. Fert. 30:265-271
  8. Kang, B. K., I. M. Jeong, J. J. Kim, S. D. Hong, and K. B. Min. 1997. Chemical characteristics of plastic film house soils in Chungbuk area. J. Korean Soc. Soil Sci. Fert. 30:265-271
  9. Kim, J. G., K. B. Lee, S. B. Lee, D. B. Lee, and S. J. Kim. 1999. The effect of long-term application of different organic material sources on chemical properties of upland soil. J. Korean Soc. Soil Sci. Fert. 32:239-253
  10. Yun, B. K., P. K. Jung, S. J. Oh, S. K. Kim, and I. S. Ryu. 1996. Effects of compost application on soil loss and physico-chemical properties in lysimeters. J. Koican Soc. Soil Sci. Fert. 29:336-341
  11. Kim, J. H., J. S. Lee, B. Y. Kim, S. G. Hong, and S. K. Ahn. 1999. Analysis of Ground water used for agriculture in Kyonggi province. Korean J. Environ. Agric. 18:148-154
  12. Kim, P. J., D. K. Lee, and D. Y. Chung. 1997. Vertical distribution of bulk density and salts in a plastic film house soil. 30:226-233
  13. Lee, C. H., J. E. Jin, and C. S. Han. 1997. Soil desalinization by pasture crops in tobacco field. J. Korean Soc. Toba. Sci. 19:24-28
  14. Lee, D. B., K. B. Lee, and K. S. Rhee. 1996. Changes of chemical contents in groundwater at controlled horticulture in Honam area. Korean J. Enviion. Agric. 15:348-354
  15. Lee, G. J., B. G. Kang, H. J. Kim, and K. B. Min. 2000. Effect of shading and nitrogen level on the accumulation of NO_3 in leaf of lettuce (Lactuca Sativa L.). Korean J. Environ. Agric. 19:294-299
  16. Ministry of Environment. 2000. The standard methods of water analysis. Ministry of Environment, Seoul, Korea
  17. Mcke, W. 1985. Nitrat in lebensmitteln. AID-Verbraucherdienst 30:69-75
  18. NIAST. 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, Rural Development Administradon, Suwon, Korea
  19. Owens, L. B., R. W. Malone, M. J. Shipitalo, W. M. Edwards, and J. V. Bonta. 2000. Lysimster study of nitrate leaching from a comsoybean rotation. J. Environ. Qual. 29:467-474 https://doi.org/10.2134/jeq2000.00472425002900020015x
  20. Yun, S. G., and S. H. Yoo. 1993. Behaviour of $NO_3$-N in soil and groundwater quality. Korean J. Environ. Agric. 12:281-297