Determination of Soil Phosphorus and Zinc Interactions using Desorption Quantity-Intensity Relationships

탈착 유효량과 가용량의 연관성을 이용한 토양 인산과 아연의 상관 관계 측정

  • Lee, Jin-Ho (Institute of Agricultural Science and Technology, Chonbuk National University) ;
  • Doolittle, James J. (Department of Plant Science, Northern Plains Biostress Laboratory, South Dakota State University)
  • Received : 2004.03.12
  • Accepted : 2004.03.29
  • Published : 2004.04.30

Abstract

Interactions of phosphorus and zinc in soils are important to determine the availability of the elements because those elements are closely related in the agricultural environment. The objective of this study was to investigate the interactions of P and Zn using desorption quantity (Q)-intensily(I) isotherms. Physically and chemically different soils, acidic Egan, acidic sandy Egeland, calcareous Glenham, and neutral Maddock, were used. The soils were enriched with different concentrations of P and Zn as $KH_2PO_4$ and $ZnSO_4$ solutions, respectively. Zinc enrichments affected availability of P in the Egan soil, which contained higher amounts of clay, organic matter, and exchangeable Fe than the other soils tested. After Zn enrichments, the pH drastically decreased in Egeland sandy soil, not changed in the calcarious Glenham soil, and slightly decreased in Egan and Maddock soil systems. The values of $Q_{max}$ and $I_0$ of phosphorus decreased with increasing Zn concentrations enriched in all soils, the changes of those values did not influence the P buffering power, |$BP_o$| values, in most soils. The influences of P treatment on Zn availability were varied. The values of Zn buffering capacity, $BC_{Zn}$, were lowest in the Egeland soil that had the lowest soil pH, amounts of clay minerals, organic matter, CEC, and exchangeable Fe, and were highest in the calcareous Glenham soil. The $BC_{Zn}$ values ranged from 202 to 4480. With P application, the changes of $BC_{Zn}$ values were more affected by the changes of soil solution Zn contents (I) than the changes of DTPA extractable Zn contents(Q). The change of Q and I values was found to be dependent upon soil properties, especially, soil pH.

토양 중 인산과 아연의 상관관계는 이들 원소들이 농업환경에 밀접하게 관계를 가지고 있기 때문에 이들 원소에 대한 유용성 측정은 중요하다. 본 연구의 목적은 토양 인산과 아연의 상관관계를 유효량(Q) 가용량(I)의 등온 탈착식을 이용하여 측정 평가하는데 있다. 본 연구에서 사용된 토양은 물리 화학적 특성이 다른 토양으로, 산성토양인 Egan, 산성 사질 토양인 Egeland, 염기성 토양인 Glenham, 중성 토양인 Maddock 이다. 토양 중에 여러농도의 인산과 아연을 $KH_2PO_4$ and $ZnSO_4$ 용액을 사용하여 처리하고 포장용수량 조건에서 안정화 시킨 후 사용하였다. 아연의 처리는 다른 토양과 비교할 때 점토, 유기물 및 치환성 철을 많이 함유하고 있는 Egan 토양에서 인산의 유용성 변화에 영향을 주었다. 또한 토양 중 아연 처리 후 토양 토양수계의 pH가 토양 특성에 따라 다르게 나타났다. 즉, 산성 사질 토양인 Egeland 토양에서는 급격하게 낮아졌고, 염기성 Glenham 토양에서는 변화하지 않았으며, 점토와 미사의 함유량이 높은 산성 Egan 토양 또는 중성 Maddock 토양에서는 미세하게 감소하였다. 인산의 최고 유효량($Q_{max}$)과 최고 가용량($I_0$)은 아연의 처리 농도가 높아짐에 따라 모든 토양에서 증가하였으나, 이러한 증가는 대부분의 토양에서 인산의 완충력(|BPo|) 계수에 영향을 주지않았다. 다른 한편으로, 토양 중 인산 처리에 있어 아연의 유용성에 대한 영향은 다양하게 나타났다. 아연의 완충력($BC_{Zn}$)계수는 Egeland 토양, 즉 토양 pH, 점토량, 유기물 함량, 양이온치환용량, 및 치환성 철이 가장 낮게 함유된 토양에서 가장 낮게 나타났고, 염기성 Glenham 토양에서 가장 높게 나타났으며, $BC_{Zn}$ 계수는 202부터 4480까지 분포되었다. 인산 처리는 $BC_{Zn}$에 영향을 주었으며, $BC_{Zn}$계수는 주요 인자인 $H_2O$추출성 아연 함량(I)과 DTPA 추출성 아연 함량(Q) 중 I의 영향을 주로 받았고, Q와 I의 변화는 토양특성, 특히 토양 pH에 의존하였다.

Keywords

References

  1. Anderson, P. R., and T. H. Christensen. 1988. Distriburion coefficients of Cd, Co, Ni, and Zn in Soils J. Soil Sei. 39: 15-22 https://doi.org/10.1111/j.1365-2389.1988.tb01190.x
  2. Barrow, N. J. 1987. The effects of pbosphate on zinc socpcion by a soil. J. Soil. Sci. 38: 453-459 https://doi.org/10.1111/j.1365-2389.1987.tb02280.x
  3. Bingham, F. T. 1963. Relation between phosphorus and micronutrients in plants. Soil Sci. Soc. Am. Proc. 27: 389-391 https://doi.org/10.2136/sssaj1963.03615995002700040012x
  4. Bolland, M. D. A., A. M. Posner, and J. P. Quirk. 1977. Zinc adsorption by goethite in the absence and presence of phosphate. Aust. J. Soil Res. 15:279-286 https://doi.org/10.1071/SR9770279
  5. Bromfield, S. M., R. W. Cumming, D. J. David, and C. H. Williams. 1983. Change in soil pH, manganese and aluminum under subterranean clover pasture. Aust. J. Exp. Agric. Anim. Husb. 23:181-191 https://doi.org/10.1071/EA9830181
  6. Bugbee, G. J., and C. R. Frink. 1995. Phosphorus and zinc fertilization of corn grown in a Connecticut soil. Commun. Soil Sci. Plant Anal. 26:269-277 https://doi.org/10.1080/00103629509369295
  7. Christensen, N. W., and T. L. Jackson. 1981. Potential for phosphorus toxicity in zinc stressed corn and potato. Soil Sci. Soc. Am.J. 45:904-909 https://doi.org/10.2136/sssaj1981.03615995004500050017x
  8. Dang, Y. P., R. C. Dalal, D. G. Edwaids, and K. G. Tiller. 1994. Zinc buffer capacity of vertisols. Aust. J. Soil Res. 32:1231-1242 https://doi.org/10.1071/SR9941231
  9. Friesen, D. K., A. S. R. Juo, and M. H. Miller. 1980. Liming and lime phosphorus zinc interactions in two Nigerian ultisols: I. Interactions in the soil. Soil Sci. Soc. Am. J. 44:1221-1226 https://doi.org/10.2136/sssaj1980.03615995004400060018x
  10. Gianquinto, G., A. Abu Rattan, L. D. Tola, D. Piccotino, and B. Pezzarossa. 2000. Interaction effects of phosphorus and zinc on photosynthesis, growth and yield of dwarf bean in two environments. Plant Soil 220:219-228 https://doi.org/10.1023/A:1004705008101
  11. Lee, J. H., and J. J. Doolittle. 2002. A proposed method for the determination of soil phosphorus desorption quantity intensity relationships using anion exchange membrane disks. Commun. Soil Sci. Plant Anal. 133:1941-1958
  12. Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42:421-428 https://doi.org/10.2136/sssaj1978.03615995004200030009x
  13. Loneragan, J. F., T. S. Grove, A. M. Robson, and K. Snowball. 1979. Phosphorus toxicity as a factor in zinc phosphorus interactions in plants. Soil Sci. Soc. Am. J. 43:966-972 https://doi.org/10.2136/sssaj1979.03615995004300050031x
  14. Loneragan, J. F., D. L. Grunes, R. M. Welch, E. A. Aduayi, A. Tengah, V. A. Lazar, and E. E. Clay. 1982. Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci. Soc. Am. J. 46:345-352 https://doi.org/10.2136/sssaj1982.03615995004600020027x
  15. Olsen, S. R., and L. E. Sommers. 1982. Phosphorus, p. 403-430. In A.L. Page et al. (ed.). Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA
  16. Pasricha, N. S., H. S. Baddesha, M. S. Aulakh, and V. K. Nayyar. 1987. The zinc quantity intensity relationships in four different soils as influenced by phosphorus. Soil Sci. 143:1-4 https://doi.org/10.1097/00010694-198701000-00001
  17. Saeed, M., and R. L. Fox. 1979. Influence of phosphate fertilization on zinc adsorption by tropical soils. Soil Sci. Soc. Am. J. 43:683-686 https://doi.org/10.2136/sssaj1979.03615995004300040011x
  18. Stanton, D. A., and R. Du T. Burger. 1967. Availability to plants of zinc sorted by soil and hydrous iron oxides. Geoderma 1:13-17 https://doi.org/10.1016/0016-7061(67)90010-9
  19. Tiller, K. G., J. Gerth, and G. Brummer. 1984. The sorption of Cd, Zn and Ni by soil clay fractions: Procedures for partition of bound forms and their interpretation. Geoderma 34:1-16 https://doi.org/10.1016/0016-7061(84)90002-8
  20. Van Rees, K. C. J., N. B. Comerford, and P. S. C. Rao. 1990. Defining soil buffer power: Implications for ion diffusion and nutrient uptake modeling. Soil Sci. Soc. Am. J. 54:1505-1507 https://doi.org/10.2136/sssaj1990.03615995005400050050x
  21. Webb, M. J., and J. F. Loneragan. 1988. Effect of zinc deficiency on growth, phosphorus concentration, and phosphorus toxicity of wheat plants. Soil Sci. Soc. Am. J. 52:1676-1680 https://doi.org/10.2136/sssaj1988.03615995005200060032x
  22. Williams, C. H. 1980. Soil acidification under clover pasture. Aust. J. Exp. Agric. Anim. Husb. 20:561-567 https://doi.org/10.1071/EA9800561
  23. Xie, R. J., and A. F. MacKenzie. 1988. The pH effect on sorption desorption and fractions of zinc in phosphate treated soils. Commun. Soil Sci. Plant Anal. 19:873-886 https://doi.org/10.1080/00103628809367981