Effect of UV-B Radiation on the Leaf Growth of Rice Seedling

벼 유묘의 엽생장에 대한 자외선의 효과

  • Received : 2003.11.12
  • Accepted : 2004.02.02
  • Published : 2004.02.29

Abstract

Rice seedlings were used to examine the effect of UV-B radiation on leaf elongation and development. Leaf elongation in both rice seedlings showed differently depending on each leaf age. UV-B radiation strongly reduced leaf elongation, 58-66% compared to without UV-B radiation, of two rice seedlings, therefore, those seedlings could not grow further. Both control and plants grown under UV-B regime showed a diurnial fluctuation in growth rate, showing maximum growth during the light period and minimum during the dark period. Leaf growth at the third leaf stage by UV-B treatment was considerably reduced by 1.7-fold than the control whereas at the fifth leaf stage was not changed. Hydrogen peroxide was considerably increased in the second phase of UV-B-induced response as catalase and peroxidase are deactivated with an increase of UV-B radiation.

본 연구는 벼 유묘기 자외선 처리에 의한 엽 신장과 출현양상의 변화를 알아보고자 수행하였다. 벼 유묘의 엽신장은 엽령에 따라 다르게 나타났다. 자외선 조사는 무처리와 비교할 때 58-66%의 엽 신장을 감소시켰다. 자외선 처리 또는 무처리 조건하에서의 엽 생장은 주로 주간에 이루어지는 졌다. 자외선에 의한 3엽의 생장은 무처리에 비해 1.7배정도 억제되었으나, 5엽 생장은 큰 차이가 없었다. 또한 스트레스에 의한 식물체내 지질과산화는 catalase와 peroxidase 활성저하로 인하여 증가하였다. 이상의 결과로 지속적인 자외선 노출은 엽 생장을 억제였으며 유묘기에 영향이 더 컸다.

Keywords

References

  1. Allen, D. J., S. Nogues, and N. R. Bake. 1998. Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J.Exp.Bot.49:1775-1788 https://doi.org/10.1093/jexbot/49.328.1775
  2. Ballare, C. L., P. W. Barnes, S. D. Flint, and S. Price. 1995. Inhibition of hypocotyl elongation by ultraviolet-B radiation in deethiolating tomato seedlings. I. The photoreceptor. Physiol Plantarum 93:584-592 https://doi.org/10.1111/j.1399-3054.1995.tb05104.x
  3. Barnes, P. W., P. W. Jordan, W. G. Gold, S. D. Flint, and M. M. Caldwell. 1988. Competition, morphology and canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-B radiation. Funct. Ecol. 2:319-330 https://doi.org/10.2307/2389404
  4. Barnes, P. W., S. D. Flint, and M. M. Caldwell. 1990. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Am. J. Bot. 77:1354-1360 https://doi.org/10.2307/2444596
  5. Dillenburg, L. R., J. H. Sullivan, and A. H. Teramura. 1995. Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar styraciflua (Hamamelidaceae) - effects of UV-B radiation. Am. J. Bot. 82:878-885 https://doi.org/10.2307/2445974
  6. Fiscus, E. L., and F. L. Booker. 1995. Is increased UV-B a threat to crop photosynthesis and productivity? Photosynth. Res. 43:89-92
  7. Fry, S. C., R. C. Smith, K. F. Renwick, D. J, Maitin, S. K. Hodge, and K. J. Matthews. 1992. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J. 282:821-828 https://doi.org/10.1042/bj2820821
  8. Liu, L,, D. C. Gitz, and J. W. McClure. 1995. Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol. Plantarum 93:725-733 https://doi.org/10.1111/j.1399-3054.1995.tb05123.x
  9. Logemann, E., S. C. Wu, J. Schroder, E. Schmelzer, I. E. Somssich, and K. Hahlbrock. 1995. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes. Plant J. 8:865-876 https://doi.org/10.1046/j.1365-313X.1995.8060865.x
  10. McQueen-Mason, S. J., and D. J. Cosgrove. 1995. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 107:87-100 https://doi.org/10.1104/pp.107.1.87
  11. Pasioura, J. B. 1994. The physical chemistry of the primary cell wall: implications for the control of expansion rate. J. Exp. Bot. 45:1675-1682
  12. Paul, N. D. 2000. Stratospheric ozone depletion, UV-B radiation and crop disease. Environ. Pollut. 108:343-355 https://doi.org/10.1016/S0269-7491(99)00213-4
  13. Searles, P. S., F. D. Flint, and M. M. Caldwell. 2001. A meta analysis of plant field studies simulating stratospheric ozone depletion. Ocecologia 127:1-10 https://doi.org/10.1007/s004420000592
  14. Sharman, B. C., 1942. Developmental anatomy of the shoot of Zeamays L. Ann. Bot. 1:245-282
  15. Staxen, I., C. Bergounioux, and J. F. Bornman. 1993. Effect of ultraviolet radiation on cell division and microtubule organization in Petunia hybrida protoplasts. Protoplasma 173:70-76 https://doi.org/10.1007/BF01378863
  16. Teramura, H., L. H. Ziska, and A. E. Sztein. 1991. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol. Plantarum 83:373-380 https://doi.org/10.1111/j.1399-3054.1991.tb00108.x
  17. Tobin, A. K., and W. J. Rogers. 1992. Megabolic regulation of organelles during leaf development, p. 293-323. In A. K. Tobin (ed.) Plant Organelles. Compartmentation of Metabolism in Photosynthetic Tissue. Society for Experimental Biology Seminar Series No. 50. Cambridge University Press, Cambridge, UK