A Study on Work Semantic Categories for Natural Language Question Type Classification and Answer Extraction

자연어 질의유형 판별과 응답 추출을 위한 어휘 의미 체계에 관한 연구

  • 윤성희 (상명대학교 컴퓨터소프트웨어공학)
  • Published : 2004.12.01

Abstract

For question answering system that extracts an answer and output to user‘s natural language question, a process of question type classification from user’s natural language query is very important. This paper proposes a question and answer type classifier using the interrogatives and word semantic categories instead of complicated classifying rules and huge dictionaries. Synonyms and postfix information are also used for question type classification. Experiments show that the semantic categories are helpful for question type classifying without interrogatives.

자연어 질의를 입력하고 문서로부터 질의에 대한 정답을 추출하여 제공하는 질의응답 시스템에서는 사용자의 질의 의도를 파악하여 질의 유형을 분류하는 과정이 매우 중요하다. 본 논문에서는 질의 유형을 분류하기 위해 복잡한 분류 규칙이나 대용량의 사전 정보를 이용하지 않고 질의의 의도를 나타내는 어휘들을 추출하고 인접 명사들의 의미 정보를 이용하여 질의 및 정답 유형을 결정할 수 있는 방법을 제안한다. 또 동의어 정보와 접미사 정보를 이용하고, 의문사가 생략된 경우 어휘 의미 정보를 이용하여 질의 유형 분류기의 성능을 향상시킬 수 있음을 보인다.

Keywords