DOI QR코드

DOI QR Code

Thermoelectric Properties of Skutterudite CoSb3 Fabricated by Mechanical Alloying Process

기계적 합금화에 의해 제조된 Skutterudite CoSb3의 열전특성

  • Choi Moon-Kwan (Department of Materials Science & Engineering/Nano Technology Lab., Chungju National University) ;
  • Cho Hyoung-Won (Department of Materials Science & Engineering/Nano Technology Lab., Chungju National University) ;
  • Ur Soon-Chul (Department of Materials Science & Engineering/Nano Technology Lab., Chungju National University) ;
  • Kim Il-Ho (Department of Materials Science & Engineering/Nano Technology Lab., Chungju National University)
  • 최문관 (충주대학교 신소재공학과/나노기술연구소) ;
  • 조경원 (충주대학교 신소재공학과/나노기술연구소) ;
  • 어순철 (충주대학교 신소재공학과/나노기술연구소) ;
  • 김일호 (충주대학교 신소재공학과/나노기술연구소)
  • Published : 2004.11.01

Abstract

Skutterudite $CoSb_3$ powders were produced by mechanical alloying (MA) of elemental powders using a nominal stoichiometric composition. Annealing of MA powders under specific condition led to a complete phase transformation to a semiconducting ${\delta}-CoSb_3$. Single phase $CoSb_3$ was successfully produced by vacuum hot pressing using MA powders without subsequent annealing. Phase transformations during mechanical alloying and hot pressing were systematically investigated using XRD and SEM. Thermoelectric properties as a function of temperature were evaluated for the hot pressed specimens and compared with results of analogous studies.

Keywords

References

  1. G. S. Nolas, D. T. Morelli and T. M. Tritt, Annu. Rev. Mater. Sci., 29, 89 (1999) https://doi.org/10.1146/annurev.matsci.29.1.89
  2. G. S. Nolas, H. B. Lyon, J. L. Cohn, T. M. Tritt and G. A. Slack, 16th Intl. Conf. on Thermoelectrics, Dresden, Germany, 1997, IEEE, pp. 321-325
  3. T. Caillat, A. Borschchevsky and J.- P. Fleurial, J. Appl. Phys., 80(8), 4442 (1996) https://doi.org/10.1063/1.363405
  4. J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin and B. C. Sales, J. Appl. Phys., 78(2), 1013 (1995) https://doi.org/10.1063/1.360402
  5. T. Caillat, A. Borshchevski and J.-P. Fleurial, 13th Intl. Conf. Thermoelectrics, Kansas City, Missouri, USA, American Institute of Physics, (1994), pp. 58-61
  6. J. Yang, Y. C. Chen, J. Peng, X, Song, W. Zhu, J. Su and R. Chen, J. of Alloying and Compound, 375, 229 (2004) https://doi.org/10.1016/j.jallcom.2003.11.036
  7. Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka, J. of Alloying and Compound, 315, 193 (2001) https://doi.org/10.1016/S0925-8388(00)01275-5
  8. J. X. Jang, Q. M. Lu, K. G. Liu, L. Zhang and M. L. Zou, Materials Letters, 58, 1981 (2004) https://doi.org/10.1016/j.matlet.2003.11.032
  9. S.-C. Ur, P. Nash and I.-H. Kim, J. of Alloys and Compounds, 361(1), 84 (2003) https://doi.org/10.1016/S0925-8388(03)00418-3
  10. D. M. Rowe and V. S. Schukla, J. Appl. Phys., 52(12), 7421 (1981) https://doi.org/10.1063/1.328733