Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse

습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석

  • 장재호 (건국대학교 지역건설환경공학과) ;
  • 정광욱 (건국대학교 지역건설환경공학과) ;
  • 함종화 (건국대학교 지역건설환경공학과) ;
  • 윤춘경 (건국대학교 지역건설환경공학과)
  • Published : 2004.09.30

Abstract

A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

본 연구에서는 용수재이용을 위해 생활하수를 지하흐름형 인공습지로 처리한 후 연못시스템에 연결시켜 미생물과 각 수질인자들의 처리효과를 분석하였으며, 그 결과를 요약하면 다음과 같다. SS의 농도는 얼음이 녹은 3월 초순에서 4월 초순까지는 10 mg $L^{-1}$ 이하의 매우 낮은 농도로 우리 나라 방류수 수질기준보다 낮은 농도를 유지할 수 있었으나 겨울이나 여름 특정기간에 농도가 높아서, 용수 재이용시 보건 ${\cdot}$ 위생적인 측면과 더불어 이용자에게 심미적인 불편함이 없어야 하므로 유출부에 여과시설 등 관리대책을 검토할 필요가 있을 것으로 생각된다. $BOD_5$는 식물의 생장과 미생물의 성장이 저조한 동절기의 농도 증가현상과 이들의 활동이 활발한 성장기의 감소현상을 뚜렷히 나타내었으나, 전체적으로는 국제적인 농업용수 재이용 수질기준보다 낮은 수준으로서 우려할 사항이 아닐 것으로 판단된다. 영양물질의 경우 DO가 상승한 호기성상태에서 T-N, T-P 농도가 감소하는 것을 확인할 수 있었다. 수질개선을 목적으로 연못시스템을 이용할 경우 3월중에 상층부를 유출시키고 3월 이후에는 수심을 낮게 유지하여 심수층까지 호기성상태를 유지하는 것이 수질관리에 유리할 것으로 판단된다. 지하흐름형 인공습지에서의 미생물 처리효율은 TC, FC, E. coli 모두 평균 92 ${\sim}$ 96% 이상 높은 처리 효율을 보였으며, 인공습지 유출수가 연못시스템을 거치면서 추가로 평글 83 ${\sim}$ 90% 이상 제거되어 평균 대장균농도가 1,200MPN 100 $mL^{-1}$ 로써 인공습지와 연못시스템을 연계 ${\cdot}$ 적용한 후 농업용수로 재이용하거나 수계로 방류할경우 보건 ${\cdot}$ 위생상의 문제를 크게 줄일 수 있을 것으로 판단된다. 미생물의 소독은 대부분 태양광에 의해서 이루어지기 때문에 본 연구와 같이 연못 상층부에서 유출시킬 경우 높은 처리효율을 기대할 수 있을 것으로 생각하며, 대장균과 연못 내에 존재하는 생물들 사이의 상호작용을 정확히 이해하여 적절한 관리대책을 마련 할 경우 안정적인 방류수 농도를 확보할 수 있을 것으로 판단된다. 자연정화로서 하수처리수를 고도 처리할 수 있는 인공습지와 연못시스템을 연계처리 하면 높은 미생물 소독효율을 나타내어 보건 ${\cdot}$ 위생상의 문제를 크게 줄일 수 있을 것으로 기대된다. 인공습지와 연계한 연못시스템의 하수처리방식은 간단한 구조, 큰 완충능력, 적은 슬러지 발생, 간소한 유지 ${\cdot}$ 관리의 장점을 가지고 있어서, 소규모하수처리와 농업용수 재이용 기술로서 적용가능성이 클것으로 판단된다.

Keywords

References

  1. Chung, Q.Y. 2003. A study on the coliforms removal methods at wastewater treatment plants. Master's Program in Department of Agricultural Resources and Environmental Engineering Graduate School of Agriculture & Animal Science KonKuk University
  2. Davies-Colley, R.J., A.M. Donnison, D.J. Speed, C.M. Ross and J. W. Nagels. 1998. Inactivation of faecal indicator microorganism in waste stabilization ponds: Interactions of environmental factors with sunlight. Water Research 33(5): 1220-1230
  3. David, S., L. Fraser, J. Boddy and B. Seibert. 2002. Efficienty of small constructed wetlands for subsurface treatment of single-family domestic effluent. Ecological Engineering 18: 429-440.
  4. Downes, A. and T.P. Blunt. 1977. Researches on the effect of light upon bacteria and other organisms. Proc. R. Soc. 28(1): 488-500
  5. Kwun, T.Y. 1999. Feasibility Study on the Reuse of Treated Sewage Effluent for Agricultura Water, A paper of master's degree, Department of agriculture engineering, Konkuk University (in Korean)
  6. Ham, J.H., C.G. Yoon, J.H. Jeon and M.H. Kim. 2002. Pond system for further polishing of constructed wetland effluent during winter season. Journal of the Korean Society of Agricultural Engineers 44(4): 139-148
  7. Lee, N.Y. and W.I. Kim. 2001. Water reuse using wastewater treatment plant effluent. Journal of Environmental Hi-Technology. pp. 100-109. (in Korean)
  8. Mayo, A.W. 1989. Effects of pond depth on bacterial kinetics in stabilization ponds. Jounal of Environmental Engineering 121: 964-977
  9. Ministry of Agriculture and Forestry (M.O.A.F.). 1997. Study of agriculture water quality guidelines establish-ment and improvement systems. 204. (in Korea)
  10. Ministry of Environment (M.O.E.). 2003. The Water Quality Reports of Wastewater Treatment Plant. 2003. (in Korea)
  11. Morris, D.P., H.C.E. Zagarese, E.G. Williamson B.R. Balseira. and B. Modunutti. 1995. The attenuation of solar UV radiation in lake and the role of dissolved organic carbon, Limnology Oceanorganic 40: 1381-1391
  12. NADB (North American Wetlands for Water Quality Treatment Database). 1994. Electronic database created by R. Knight, R. Ruble, R. Kadlec, and S. Reed for the U. S. Environmental Protection Agency. Copies available from Don Brown. U. S. EPA. 569-7630
  13. Neralla, S., Richard W. Weaver, Bruce J. Lesikar and Russell A. Persyn. 2000. Improvement of domestic wastewater quality by subsurface flow constructed wetlands.ARTICLE Bioresource Technology Volume 75, Issue 1, October, Pages 19-25
  14. Ohgaki, S., A. Ketratanakul and U. Prasertsom. 1986. Effect of sunlight on coliphages in an oxidation pond. Water Science Technology 18: 37-46
  15. Oswald, W.J. 1988. Advances in Anaerobic pond system designs. In Advances in Water Quality Improvement. ed. E.F. Gloyna and W.W. Eckenfelder. University of Texas Press. Austin. 186-194
  16. Peter, M.O., P. Shanahan and F.P. Martin. 2003. Solar disinfection (SODIS): simulation of solar radiation for global assessment and application for point-of-use water treatment in Haiti. Water Research 37: 47-54
  17. Ronan, M.C., E.M. Michael, J. Tina, G.G. Kevin and B. Joseph. 1996. Solar disinfection of drinking water and diarrhoea in Massai children: a controlled field trial. Early Reports 348: 1695-1697
  18. Tanner, C.C., J.S. Clayton and M.P. Upsdell. 1995. Effect of lading rate and planting on treatment of dairy farm wastewaters in constructed wetlands - I. Removal of oxygen demand, suspended solids and fecal coliform. Water Research 29(1): 17-26
  19. Thurston, J.A., C.P. Gerba. K.E. Forster and M.M. Karpiscak. 2001. Fate of indicator microorganism, Giardia and Cryptosporidium in subsurface flow constructed wetlands. Water Research 35(6): 1547-1551
  20. Troussellier, M. and P. Legendre. 1989. Dynamics of fecal coliform and culturable heterotroph densities in an eutrophic ecosystem: stability of models and evolution of these bacterial groups. Microbial Ecology 17: 227-235
  21. US. EPA. 1992. Manual-Guidelines for water reuse. 1992
  22. EPA/625/R-921004. U.S. Agency international development http://www.epa.gov. Assessed 9 Aug. 2002
  23. Yoon, C.G., S.K. Kwun and J.H. Ham. 1999. Wetland performance for wastewater treatment in growing and winter seasons. Journal of the Korean Society of Agricultural Engineers 41(4): 37-46. (in Korean)
  24. WHO. 1989. Health Guidelines for the use of wastewater in agriculture and aquaculture. Report of a WHO Scientific Group. Technical Report Series.778. WHO. Geneva
  25. WHO. 2000. Guidelines for the microbiological quality of treated wastewater used in agriculture: recommendations for revising WHO guidelines: Special Theme-Environment and Health
  26. Yoon, C.G., S.K. Kwun, J.H. Ham and J.K. Noh. 2000. Study on the performance of constructed wetland system for sewage treatment. Journal of the Korean Society of Agricultural Engineers 42(4): 96-105 (in Korean)
  27. Yoon, C.G., K.W. Jung, J.H. Jeon and J.H. Ham 2003. Guidelines and Optimum Treatment for Agriculture Reuse of Reclaimed Water. Journal of Limnology 36(3): 356-368 (in Korean)
  28. Yoon, C.G., K.W. Jung, J.H. Ham and J.H. Jeon 2003. Feasibility Study of Natural Systems for Sewage Treatment and Agricultural Reuse. Journal of the Korean Society of Agricultural Engineers 45(6): 194-206 (in Korean)