Prey Preference of Juvenile Fish Based on the Laboratory Experiments and its Impact on Zooplankton Community of the Nakdong River

치어의 먹이선호도 및 포식이 낙동강 동물플랑크톤군집에 미치는 영향.

  • Chang, Kwang-Hyeon (Research and Education Center for Inlandwater Environment, Shinshu University) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University) ;
  • La, Geung-Hwan (Department of Biology, Pusan National University) ;
  • Jeong, Kwang-Seuk (Department of Biology, Pusan National University) ;
  • Joo, Gea-Jae (Department of Biology, Pusan National University)
  • 장광현 (일본 슈대학교 내륙환경연구 및 교육센터) ;
  • 김현우 (순천대학교 환경교육학과) ;
  • 라긍환 (부산대학교 생물학과) ;
  • 정광석 (부산대학교 생물학과) ;
  • 주기재 (부산대학교 생물학과)
  • Published : 2004.03.31

Abstract

In the present study, prey preference of juvenile fishes was examined using an experimental approach. Zooplankton composition, as a prey of the fish, was evaluated by taking into account the species as well as body size of juveniles in the aquarium. The predation of juvenile fishes is known to be an important factor in changes of zooplankton communities. In some previous studies at the regulated Nakdong River, the collapse of large cladcoerans and an increase in the rotifer population by selective predation during spring and summer were observed. This study focused on the predation of juvenile fishes such as Hyporhamphus sajori, Rhinogobius brunneus, and Opsariichtys uncirostris amurensis on zooplankton community structure in mesocosm scale experiments. These fishes selected the cladoceran Moina micrura with highest individual preference value (Manly/Chesson index)among zooplankton prey in the experimental aquarium. When the size-selective prey preferences of the juvenile fish were compared, both small (body size <2 cm) and large (body size >2cm) juveniles of O. uncirostris positively selected M. micrura. In the outdoor experimental tanks, juvenile fishes consumed the cladoceran M. micrura, resulting in an high abundance of the rotifer, Polyarthra spp. The results suggest that juvenile fish predation may play an important role in regulating the zooplankton community structure by reducing the cladoceran density and increase of rotifers in the Nakdong River during spring and summer.

저수지화성향을 띤 낙동강은 수체가 정체되는 시기에 높은 동물플랑크톤 밀도를 보인다. 이 시기의 높은 치어개체군 밀도는 지각류 개체군 밀도의 감소와 윤충류 개체군 밀도의 증가를 유도하는 주요요인으로 제시되었다. 본 연구에서는 실험실실험을 통해 치어의 먹이선호도와 포식이 낙동강 동물플랑크톤 군집에 미치는 영향을 평가하였다. 여러 종류의 치어의 먹이선호도 및 크기가 다른 치어의 먹이선호도를 실험실 수조내에서 평가하는 한편, 대형 수조에서 이들 치어의 포식이 동물플랑크톤군집에 미치는 영향을 모니터링 하였다. 실험에 사용된 세종류의 치어 (Hyporhamphus sajori, Rhinogobius brunneus, Opsariichtys uncirostris) 및 크기가 다른 치어 (O. uncirostris) 모두지각류 Moina micrura에 가장 높은 먹이선호도를 나타냈다. 야외수조에서 실시된 실험에서 치어의 포식은 지각류 M. micrura를 억제하는 한편 윤충류인 Polyarthra spp.의 우점을 유도하였다. 본 실험결과. 치어의 섭식은 낙동강에서 동물플랑크톤 군집구조를 결정하는 중요한 요인으로 사료된다.

Keywords

References

  1. Attayde J.L. and L.-A. Hansson. 2001. The relative importance of fish predation and excretion effects on planktonic communities. Limnol. Oceanogr. 46: 1001-1012
  2. Boersma, M., O.F.R. van Tongeren and W.M. Mooij. 1996. Seasonal patterns in the mortality of Da-phnia species in a shallow lake. Can. J. Fish. Aquat. Sci. 53: 18-28
  3. $B\phi hn$, T. and P.-A. Amundsen. 1998. Effects of inva-ding vendace (Coregonus albula L.) on species composition and body size in two zooplankton communities of the Pasvik River System, nor-thern Norway. J. Plankton Res. 20: 243-256
  4. Brooks, J.L. and S.I. Dodson, 1965. Predation, body size, and the composition of the plankton. Science 150: 28-35
  5. Chang, K.H. and T. Hanazato. 2003. Vulnerability of cladoceran species to predation by the copepod Mesocyclops leuckarti; laboratory observations on the behavioural interactions between predator and prey. Freshwater Biol. 48: 476-484
  6. Chang, K.H., S.J. Hwang, M.H. Jang, H.W. Kim, K.S. Jeong, and G.J. Joo. 2001. Effect of juvenile fish predation on the zooplankton community in the large regulated Nakdong River, South Korea. Kor. J. Lim. 34: 310-318
  7. Chesson, J. 1978. Measuring preference in selective predation. Ecology 9: 923-947
  8. Dodson, S.I. 1974. Zooplankton competition and pre-dation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605-613
  9. Drenner, R.W. and S.R. McComas. 1980. The role of zooplankter escape ability and fish size selectivity in the selective feeding and impact of planktivor-ousfish. In: Evolution and Ecology of Zooplankton Communities (W.C. Kerfoot, ed.), University Press of New England, Hanover, N.H., pp.587-592
  10. Gliwicz, Z.M., A.E. Rutkowska and J. Wojciechowska. 2000. Daphnia populations in three interconnect-ed lakes with roach as the principal planktivore. J. Plankton Res. 22: 1539-1557
  11. Ha, K., H.W. Kim and G.J. Joo. 1998. The phyto-plankton succession in the lower part of hypertro-phic Nakdong River (Mulgum), South Korea. Hydrobiologia 369/370: 217-227
  12. Hanazato, T., T. Iwakuma and H. Hayashi. 1990. Impact of whitefish on an enclosure ecosystem in a shallow eutrophic lake: selective feeding of fish and predation effects on the zooplankton commu-nities. Hydrobiologia 200/201: 129-140
  13. Jack, J.D. and J.H. Thorp. 2002. Impacts of fish predation on an Ohio River zooplankton commu-nity. J. Plankton Res. 24: 119-127
  14. Kerfoot, W.C. and A. Sih. 1987. Predation: direct and indirect impacts on aquatic communities. Univer-sity Press of New England, Hanover and London. pp.386
  15. Kim, H.W., K. Ha and G.J. Joo. 1998. Eutrophication of the lower Nakdong River after the construction of an estuary dam in 1987. Internat. Rev. Hydro-biol. 83: 65-72
  16. Kim, H.W., S.J. Hwang and G.J. Joo. 2000. Zooplank-ton grazing on bacteria and phytoplankton in the regulated Nakdong River (Korea). J. Plankton Res. 22: 1559-1577
  17. Lim, B.J., B.C. Kim, K.I. Yoo and J.K. Ryu. 1997. Changes in zooplankton community during the blue-green algal bloom in the Nakdong River. Kor. J. Limnol. 30: 337-346
  18. Lynch, M. 1979. Predation, competition, and zooplank-ton community structure: an experimental study. Limnol. Oceanogr. 24: 253-272
  19. Parrish, D.L. and F.J. Margraf. 1991. Selectivity by age 0 white perch (Morone americana) and yellow perch (Perca flavescens) in laboratory experi-ments. Can. J. Fish. Aquat. Sci. 48: 607-610
  20. Qin, J. and D.A. Culver. 1995. Effect of young-ofthe-year walleye (Percidae: Stizostedion vitreum) on plankton dynamics and water quality in ponds. Hydrobiologia 297: 217-227
  21. Rettig, J.E. 2003. Zooplankton responses to predation by larval bluegill: an enclosure experiment. Fresh-water Biol. 48: 636-648
  22. Vanni, M.J., C.D. Layne, and S.E. Arnott. 1997. 'Top-down' trophic interactions in lakes: effect of fish on nutrient dynamics. Ecology 78: 1-20
  23. Werner, E.E. and D.J. Hall. 1974. Optimal foraging and the size selection of prey by the bluegill sun-fish (Lepomis macrochirus). Ecology 55: 1042-1052
  24. Wetzel, R.G. and G.E. Likens. 1991. Limnological Analyses, $2^{nd}$ ed. Sppringer-Verlag, New York
  25. Zagarese, H.E. 1990. Effect of selective planktivory by fry of Rhamdia sapo (Pimelodidae: Pisces) on zooplankton community structure. Freshwater Biol. 24: 557-562