JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 17, No. 1, April 2004

THE EQUIVALENCE OF THE AP-HENSTOCK AND AP-DENJOY INTEGRALS

JAE MYUNG PARK^{*}, JAE JUNG OH^{**}, JIN KIM^{**} AND HAE KYOUNG LEE^{**}

ABSTRACT. In this paper, we define the ap-Denjoy integral and investigate some properties of the ap-Denjoy integral.

1. Introduction

Let E be a measurable set and let c be a real number. The *density* of E at c is defined by

$$d_c E = \lim_{h \to 0^+} \frac{\mu(E \cap (c - h, c + h))}{2h}$$
,

provided the limit exists. The point c is called a *point of density* of E if $d_c E = 1$. The set E^d represents the set of all points $x \in E$ such that x is a point of density of E.

A function $F : [a, b] \to \mathbb{R}$ is said to be approximately differentiable at $c \in [a, b]$ if there exists a measurable set $E \subseteq [a, b]$ such that $c \in E^d$ and $\lim_{\substack{x \to c \\ x \in E}} \frac{F(x) - F(c)}{x - c}$ exists. The approximate derivative of F at c is denoted by $F'_{ap}(c)$.

An approximate neighborhood (or ap-nbd) of $x \in [a, b]$ is a measurable set $S_x \subseteq [a, b]$ containing x as a point of density. For every $x \in E \subseteq [a, b]$, choose an ap-nbd $S_x \subseteq [a, b]$ of x. Then we say that $S = \{S_x : x \in E\}$ is a choice on E. A tagged interval (x, [c, d])

Received by the editors on April 14, 2004.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 26A39, 28B05.

Key words and phrases: ap-Henstock integrable, ap-Denjoy integrable, approximately differentiable.

is said to be *subordinate* to the choice $S = \{S_x\}$ if $c, d \in S_x$. Let $\mathcal{P} = \{(x_i, [c_i, d_i]) : 1 \leq i \leq n\}$ be a finite collection of non-overlapping tagged intervals. If $(x_i, [c_i, d_i])$ is subordinate to a choice S for each i, then we say that \mathcal{P} is subordinate to S. If \mathcal{P} is subordinate to S and $[a, b] = \bigcup_{i=1}^n [c_i, d_i]$, then we say that \mathcal{P} is a tagged partition of [a, b] that is subordinate to S.

2. The ap-Denjoy and ap-Henstock integrals

We introduce the notion of the approximate Lusin function. This function is used to define the ap-Denjoy integral.

DEFINITION 2.1. Let $F : [a, b] \to \mathbb{R}$ be a function. The function F is an approximate Lusin function (or F is an AL function) on [a, b] if for every measurable set $E \subseteq [a, b]$ of measure zero and for every $\varepsilon > 0$ there exists a choice S on E such that $|(\mathcal{P}) \sum F(I)| < \varepsilon$ for every finite collection \mathcal{P} of non-overlapping tagged intervals that is subordinate to S.

Recall that $F : [a, b] \to \mathbb{R}$ is AC_s on a measurable set $E \subseteq [a, b]$ if for each $\varepsilon > 0$ there exist a positive number η and a choice S on E such that $|(\mathcal{P}) \sum F(I)| < \varepsilon$ for every finite collection \mathcal{P} of non-overlapping tagged intervals that is subordinate to S and satisfies $(\mathcal{P}) \sum |I| < \eta$, where |I| is the Lebesgue measure of an interval I. The function F is ACG_s on E if E can be expressed as a countable union of measurable sets on each of which F is AC_s .

LEMMA 2.1. If $F : [a, b] \to \mathbb{R}$ is ACG_s on [a, b], then F is an AL function on [a, b].

Proof. Suppose that $E \subseteq [a, b]$ is a measurable set of measure zero. Let $\epsilon > 0$ and $E = \bigcup_{n=1}^{\infty} E_n$, where $\{E_n\}$ is a sequence of disjoint measurable sets and F is AC_s on each E_n . For each n, there exists a choice $S^n = \{S_x^n : x \in E_n\}$ on E_n and a positive number η_n such that $|(\mathcal{P}) \sum F(I)| < \epsilon/2^n$ whenever \mathcal{P} is subordinate to S^n and

 $(\mathcal{P}) \sum |I| < \eta_n$. For each n, choose an open set O_n such that $E_n \subseteq O_n$ and $|O_n| < \eta_n$. Let $S_x = S_x^n \cap O_n$ for each $x \in E_n$. Then $S = \{S_x : x \in E\}$ is a choice on E. Suppose that \mathcal{P} is subordinate to S. Let $\mathcal{P}_n \subseteq \mathcal{P}$ that has tags in E_n and note that $(\mathcal{P}) \sum |I| < |O_n| < \eta_n$. Hence

$$|(\mathcal{P})\sum F(I)| \le \sum_{n=1}^{\infty} |(\mathcal{P}_n)\sum F(I)| < \sum_{n=1}^{\infty} \frac{\epsilon}{2^n} = \epsilon,$$

as desired.

DEFINITION 2.2. A function $f : [a, b] \to \mathbb{R}$ is ap-Denjoy integrable on [a, b] if there exists an AL function F on [a, b] such that F is approximately differentiable a.e. on [a, b] and $F'_{ap} = f$ a.e. on [a, b]. The function f is ap-Denjoy integrable on a measurable set $E \subseteq [a, b]$ if $f\chi_E$ is ap-Denjoy integrable on [a, b].

If we add the condition F(a) = 0, then the function F is unique. We will denote this function F(x) by $(AD) \int_{a}^{x} f$.

It is easy to show that if $f : [a, b] \to \mathbb{R}$ is ap-Denjoy integrable on [a, b], then f is ap-Denjoy integrable on every subinterval of [a, b]. This gives rise to an interval function F such that $F(I) = (AD) \int_I f$ for every subinterval $I \subseteq [a, b]$. The function F is called the primitive of f.

Recall that $F : [a, b] \to \mathbb{R}$ is AC_* on a measurable set $E \subseteq [a, b]$ if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $\sum_{i=1}^n \omega(F, [c_i, d_i]) < \varepsilon$ whenever $\{[c_i, d_i] : 1 \le i \le n\}$ is a finite collection of non-overlapping intervals that have endpoints in E and satisfy $\sum_{i=1}^n (d_i - c_i) < \delta$, where $\omega(F, [c_i, d_i]) = \sup\{|F(y) - F(x)| : c_i \le x < y \le d_i\}$. The function F is ACG_* on E if $F|_E$ is continuous on $E, E = \bigcup_{n=1}^\infty E_n$ and F is ACG_* on each E_n . It is easy to show that is F is ACG_* on [a, b], then F is ACG_s on [a, b]. A function $f : [a, b] \to \mathbb{R}$ is Denjoy

106

integrable on [a, b] if there exists an ACG_* function $F : [a, b] \to \mathbb{R}$ such that F' = f almost everywhere on [a, b].

The following theorem shows that the ap-Denjoy integral is an extension of the Denjoy integral.

THEOREM 2.2. If $f : [a, b] \to \mathbb{R}$ is Denjoy integrable on [a, b], then f is ap-Denjoy integrable on [a, b].

Proof. Suppose that $f : [a, b] \to \mathbb{R}$ is Denjoy integrable on [a, b]. Then there exists an ACG_* function $F : [a, b] \to \mathbb{R}$ such that F' = falmost everywhere on [a, b]. Since F is ACG_s on [a, b], by Lemma 2.1, F is an AL function on [a, b] and $F'_{ap} = F' = f$ almost everywhere on [a, b]. Hence f is ap-Denjoy integrable on [a, b].

THEOREM 2.3. Let $f : [a, b] \to \mathbb{R}$ be ap-Denjoy integrable on [a, b]and let $F(x) = (AD) \int_a^x f$ for each $x \in [a, b]$. Then

- (a) the function F is approximately differentiable a.e. on [a, b] and $F'_{ap} = f$ a.e. on [a, b]; and
- (b) the functions F and f are measurable.

Proof. (a) follows from the definition of the ap-Denjoy integral. Since F is approximately continuous a.e. on [a, b], F is measurable by [3, Theorem 14.7]. It follows from [3, Theorem 14.12] that f is measurable.

THEOREM 2.4. Let $F : [a, b] \to \mathbb{R}$ be an AL function on [a, b]. If F is approximately differentiable a.e. on [a, b], then F'_{ap} is appendix properties on [a, b] and $(AD) \int_a^x F'_{ap} = F(x) - F(a)$ for each $x \in [a, b]$.

Proof. Suppose that F is an AL function on [a, b] and F is approximately differentiable a.e. on [a, b]. Then for every constant function C, F + C is also an AL function on [a, b], approximately

differentiable a.e. on [a, b] and $(F + C)'_{ap} = F'_{ap}$ a.e. on [a, b]. Hence F'_{ap} is ap-Denjoy integrable on [a, b] and

$$F(x) + C = (AD) \int_{a}^{x} F'_{ap}$$
 for each $x \in [a, b]$.

Since F(a) + C = 0, C = -F(a) and

$$(AD)\int_{a}^{x}F'_{ap} = F(x) - F(a)$$

for each $x \in [a, b]$.

We can easily show that if f is ap-Denjoy integrable on each of intervals [a, c] and [c, b], then f is ap-Denjoy integrable on [a, b] and

$$(AD)\int_{a}^{b} f = (AD)\int_{a}^{c} f + (AD)\int_{c}^{b} f$$

Recall that a function $f : [a, b] \to \mathbb{R}$ is *ap-Henstock integrable* on [a, b] if there exists a real number A with the following property ; for each $\varepsilon > 0$ there exists a choice S on [a, b] such that $|(\mathcal{P}) \sum f(x)|I| - A| < \varepsilon$ whenever $\mathcal{P} = \{(x, I) : x \in [a, b]\}$ is a tagged partition of [a, b] that is subordinate to S. The real number A is called the ap-Henstock integral of f on [a, b] and is denoted by $(AH) \int_a^b f$. If f is ap-Henstock integrable on [a, b], then f is also ap-Henstock integrable on any subinterval I of [a, b]. Hence an interval function F can be defined with $F(I) = (AH) \int_I f$. The function F is called the primitive of f. It is well-known [3] that the ap-Henstock integral is equivalent to the ap-Perron integral.

The following theorem shows that the ap-Denjoy integral is equivalent to the ap-Henstock integral and the integrals are equal.

THEOREM 2.5. The function $f : [a, b] \to \mathbb{R}$ is ap-Denjoy integrable on [a, b] if and only if f is ap-Henstock integrable on [a, b] and the integrals are equal.

Proof. If f is ap-Henstock integrable on [a, b] with the primitive F, then F is ACG_s on [a, b] and $F'_{ap} = f$ a.e. on [a, b] [3, Theorem 16.18]. By Lemma 2.1, f is ap-Denjoy integrable on [a, b].

Suppose that f is ap-Denjoy integrable on [a, b] with the primitive F. Then F is an AL function on [a, b] such that F is approximately differentiable a.e. on [a, b] and $F'_{ap} = f$ a.e. on [a, b]. Let

$$E = \{x \in [a, b] : F'_{ap}(x) \neq f(x)\}$$

Then |E| = 0. Let D = [a, b] - E and let $\varepsilon > 0$.

For each $x \in D$, there exists a measurable set $D_x \subseteq [a, b]$ such that $x \in D_x^d$ and

$$F'_{ap}(x) = \lim_{\substack{y \to x \\ y \in D_x}} \frac{F(y) - F(x)}{y - x}$$

So there exists $\delta_x > 0$ such that for every $y \in D_x \cap (x - \delta_x, x + \delta_x) = S_x$

$$|F(y) - F(x) - F'_{ap}(x)(y - x)| \le \varepsilon |y - x| .$$

If (x, [u, v]) is a tagged interval that is subordinate to $\{S_x\}$, then

$$|F(v) - F(u) - F'_{ap}(x)(v-u)| \le |F(v) - F(x) - F'_{ap}(x)(v-x)| + |F(x) - F(u) - F'_{ap}(x)(x-u)| < \varepsilon(v-x) + \varepsilon(x-u) = \varepsilon(v-u) .$$

Hence, there exists a choice S' on D such that $|(\mathcal{P}) \sum f(x)|I| - (\mathcal{P}) \sum F(I)| < \varepsilon(\mathcal{P}) \sum |I|$, whenever \mathcal{P} is a collection of tagged intervals that is subordinate to S'.

By [3, Lemma 9.15] and the fact that F is an AL function on [a, b], there exists a choice S'' on E such that $|(\mathcal{P}) \sum f(x)|I|| < \varepsilon$ and $|(\mathcal{P}) \sum F(I)| < \varepsilon$, whenever \mathcal{P} is subordinate to S''. Let $S = S' \cup S''$. Then S is a choice on [a, b].

Suppose that \mathcal{P} is a tagged partition of [a, b] that is subordinate to S. Let \mathcal{P}_E be the subset of \mathcal{P} that has tags in E and let $\mathcal{P}_D = \mathcal{P} - \mathcal{P}_E$. Then we have

$$\begin{aligned} |(\mathcal{P})\sum f(x)|I| - (\mathcal{P})\sum F(I)| &\leq |(\mathcal{P}_D)\sum f(x)|I| - (\mathcal{P}_D)\sum F(I)| \\ &+ |(\mathcal{P}_E)\sum f(x)|I|| + |(\mathcal{P}_E)\sum F(I)| \\ &< \varepsilon(b-a+2) \end{aligned}$$

Hence, f is ap-Henstock integrable on [a, b] and

(AH)
$$\int_{a}^{b} f = (\mathcal{P}) \sum F(I) = F(b) - F(a) = (AD) \int_{a}^{b} f,$$

as desired.

References

- P.S. Bullen, The Burkill approximately continuous integal, J. Austral. Math. Soc. (Series A) 35 (1983), 236–253.
- T.S. Chew and K. Liao, The descriptive definitions and properties of the AP-integral and their application to the problem of controlled convergence, Real Analysis Exchange 19 (1993–94), 81–97.
- R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., Providence, R.I., 1994.
- R.A. Gordon, Some comments on the McShane and Henstock integrals, Real Analysis Exchange 23 (1997–98), 329–342.
- J. Kurzweil, On multiplication of Perron integrable functions, Czechoslovak Math. J. 23 (1973), 542–566.
- J. Kurzweil and J. Jarnik, 'Perron type integration on n-dimensional intervals as an extension of integration of step functions by strong equiconvergence', *Czechoslovak Math. J.*.
- T.Y. Lee, On a generalized dominated convergence theorem for the AP integral, Real Analysis Exchange 20 (1994–95), 77–88.

- 8. K. Liao, On the descriptive definition of the Burkill approximately continuous integral, Real Analysis Exchange **18** (1992–93), 253–260.
- 9. Y.J. Lin, On the equivalence of four convergence theorems for the AP-integral, Real Analysis Exchange **19** (1993–94), 155–164.
- J.M. Park, Bounded convergence theorem and integral operator for operator valued measures, Czechoslovak Math. J. 47 (1997), 425–430.
- J.M. Park, The Denjoy extension of the Riemann and McShane integrals, Czechoslovak Math. J. 50 (2000), 615–625.
- 12. J.M. Park, C.G. Park, J.B. Kim, D.H. Lee and W.Y. Lee, *The integrals of* s-Perron, sap-Perron and ap-McShane, Czechoslovak Math. J. (to appear).
- A.M. Russell, Stieltjes type integrals, J. Austral. Math. Soc. (Series A) 20 (1975), 431–448.
- A.M. Russell, A Banach space of functions of generalized variation, Bull. Austral. Math. Soc. 15 (1976), 431–438.

*

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305–764, KOREA

E-mail: jmpark@math.cnu.ac.kr

**

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305–764, KOREA