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THE EQUIVALENCE OF THE AP–HENSTOCK

AND AP–DENJOY INTEGRALS
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Abstract. In this paper, we define the ap-Denjoy integral and in-
vestigate some properties of the ap-Denjoy integral.

1. Introduction

Let E be a measurable set and let c be a real number. The density

of E at c is defined by

dcE = lim
h→0+

µ(E ∩ (c − h, c + h))

2h
,

provided the limit exists. The point c is called a point of density of

E if dcE = 1. The set Ed represents the set of all points x ∈ E such

that x is a point of density of E.

A function F : [a, b] → R is said to be approximately differentiable

at c ∈ [a, b] if there exists a measurable set E ⊆ [a, b] such that c ∈ Ed

and limx→c
x∈E

F (x)−F (c)
x−c

exists. The approximate derivative of F at c is

denoted by F ′

ap(c).

An approximate neighborhood(or ap-nbd) of x ∈ [a, b] is a mea-

surable set Sx ⊆ [a, b] containing x as a point of density. For every

x ∈ E ⊆ [a, b], choose an ap-nbd Sx ⊆ [a, b] of x. Then we say that

S = {Sx : x ∈ E} is a choice on E. A tagged interval (x, [c, d])

Received by the editors on April 14, 2004.
2000 Mathematics Subject Classifications: Primary 26A39, 28B05.

Key words and phrases: ap-Henstock integrable, ap-Denjoy integrable, approx-

imately differentiable.

103



104 J.M. PARK, J.J. OH, J. KIM AND H.K. LEE

is said to be subordinate to the choice S = {Sx} if c, d ∈ Sx. Let

P = {(xi, [ci, di]) : 1 ≤ i ≤ n} be a finite collection of non-overlapping

tagged intervals. If (xi, [ci, di]) is subordinate to a choice S for each

i, then we say that P is subordinate to S. If P is subordinate to S

and [a, b] =
⋃n

i=1[ci, di], then we say that P is a tagged partition of

[a, b] that is subordinate to S.

2. The ap-Denjoy and ap-Henstock integrals

We introduce the notion of the approximate Lusin function. This

function is used to define the ap-Denjoy integral.

Definition 2.1. Let F : [a, b] → R be a function. The function

F is an approximate Lusin function(or F is an AL function) on [a, b]

if for every measurable set E ⊆ [a, b] of measure zero and for every

ε > 0 there exists a choice S on E such that |(P)
∑

F (I)| < ε for

every finite collection P of non-overlapping tagged intervals that is

subordinate to S.

Recall that F : [a, b] → R is ACs on a measurable set E ⊆ [a, b] if

for each ε > 0 there exist a positive number η and a choice S on E such

that |(P)
∑

F (I)| < ε for every finite collection P of non-overlapping

tagged intervals that is subordinate to S and satisfies (P)
∑

|I| < η,

where |I| is the Lebesgue measure of an interval I. The function F is

ACGs on E if E can be expressed as a countable union of measurable

sets on each of which F is ACs.

Lemma 2.1. If F : [a, b] → R is ACGs on [a, b], then F is an AL

function on [a, b].

Proof. Suppose that E ⊆ [a, b] is a measurable set of measure zero.

Let ǫ > 0 and E = ∪∞

n=1En, where {En} is a sequence of disjoint

measurable sets and F is ACs on each En. For each n, there exists

a choice Sn = {Sn
x : x ∈ En} on En and a positive number ηn

such that |(P)
∑

F (I)| < ǫ/2n whenever P is subordinate to Sn and
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(P)
∑

|I| < ηn. For each n, choose an open set On such that En ⊆ On

and |On| < ηn. Let Sx = Sn
x ∩ On for each x ∈ En. Then S = {Sx :

x ∈ E} is a choice on E. Suppose that P is subordinate to S. Let

Pn ⊆ P that has tags in En and note that (P)
∑

|I| < |On| < ηn.

Hence

|(P)
∑

F (I)| ≤
∞∑

n=1

|(Pn)
∑

F (I)| <
∞∑

n=1

ǫ

2n
= ǫ,

as desired. �

Definition 2.2. A function f : [a, b] → R is ap-Denjoy integrable

on [a, b] if there exists an AL function F on [a, b] such that F is

approximately differentiable a.e. on [a, b] and F ′

ap = f a.e. on [a, b].

The function f is ap-Denjoy integrable on a measurable set E ⊆ [a, b]

if fχE is ap-Denjoy integrable on [a, b].

If we add the condition F (a) = 0, then the function F is unique.

We will denote this function F (x) by (AD)
∫ x

a
f .

It is easy to show that if f : [a, b] → R is ap-Denjoy integrable

on [a, b], then f is ap-Denjoy integrable on every subinterval of [a, b].

This gives rise to an interval function F such that F (I) = (AD)
∫

I
f

for every subinterval I ⊆ [a, b]. The function F is called the primitive

of f .

Recall that F : [a, b] → R is AC∗ on a measurable set E ⊆ [a, b]

if for each ε > 0 there exists δ > 0 such that
∑n

i=1 ω(F, [ci, di]) < ε

whenever {[ci, di] : 1 ≤ i ≤ n} is a finite collection of non-overlapping

intervals that have endpoints in E and satisfy
∑n

i=1(di − ci) < δ,

where ω(F, [ci, di]) = sup{|F (y) − F (x)| : ci ≤ x < y ≤ di}. The

function F is ACG∗ on E if F |E is continuous on E, E = ∪∞

n=1En

and F is AC∗ on each En. It is easy to show that is F is ACG∗ on

[a, b], then F is ACGs on [a, b]. A function f : [a, b] → R is Denjoy
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integrable on [a, b] if there exists an ACG∗ function F : [a, b] → R

such that F ′ = f almost everywhere on [a, b].

The following theorem shows that the ap-Denjoy integral is an

extension of the Denjoy integral.

Theorem 2.2. If f : [a, b] → R is Denjoy integrable on [a, b], then

f is ap-Denjoy integrable on [a, b].

Proof. Suppose that f : [a, b] → R is Denjoy integrable on [a, b].

Then there exists an ACG∗ function F : [a, b] → R such that F ′ = f

almost everywhere on [a, b]. Since F is ACGs on [a, b], by Lemma 2.1,

F is an AL function on [a, b] and F ′

ap = F ′ = f almost everywhere on

[a, b]. Hence f is ap-Denjoy integrable on [a, b]. �

Theorem 2.3. Let f : [a, b] → R be ap-Denjoy integrable on [a, b]

and let F (x) = (AD)
∫ x

a
f for each x ∈ [a, b]. Then

(a) the function F is approximately differentiable a.e. on [a, b] and

F ′

ap = f a.e. on [a, b] ; and

(b) the functions F and f are measurable.

Proof. (a) follows from the definition of the ap-Denjoy integral.

Since F is approximately continuous a.e. on [a, b], F is measurable

by [3, Theorem 14.7]. It follows from [3, Theorem 14.12] that f is

measurable. �

Theorem 2.4. Let F : [a, b] → R be an AL function on [a, b].

If F is approximately differentiable a.e. on [a, b], then F ′

ap is ap-

Denjoy integrable on [a, b] and (AD)
∫ x

a
F ′

ap = F (x) − F (a) for each

x ∈ [a, b].

Proof. Suppose that F is an AL function on [a, b] and F is

approximately differentiable a.e. on [a, b]. Then for every constant

function C , F + C is also an AL function on [a, b], approximately
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differentiable a.e. on [a, b] and (F + C)′ap = F ′

ap a.e. on [a, b]. Hence

F ′

ap is ap-Denjoy integrable on [a, b] and

F (x) + C = (AD)

∫ x

a

F ′

ap for each x ∈ [a, b].

Since F (a) + C = 0, C = −F (a) and

(AD)

∫ x

a

F ′

ap = F (x) − F (a)

for each x ∈ [a, b]. �

We can easily show that if f is ap-Denjoy integrable on each of

intervals [a, c] and [c, b], then f is ap-Denjoy integrable on [a, b] and

(AD)

∫ b

a

f = (AD)

∫ c

a

f + (AD)

∫ b

c

f .

Recall that a function f : [a, b] → R is ap-Henstock integrable on

[a, b] if there exists a real number A with the following property ; for

each ε > 0 there exists a choice S on [a, b] such that |(P)
∑

f(x)|I| −

A| < ε whenever P = {(x, I) : x ∈ [a, b]} is a tagged partition of

[a, b] that is subordinate to S. The real number A is called the ap-

Henstock integral of f on [a, b] and is denoted by (AH)
∫ b

a
f . If f is

ap-Henstock integrable on [a, b], then f is also ap-Henstock integrable

on any subinterval I of [a, b]. Hence an interval function F can be

defined with F (I) = (AH)
∫

I
f . The function F is called the primitive

of f . It is well-known [3] that the ap-Henstock integral is equivalent

to the ap-Perron integral.

The following theorem shows that the ap-Denjoy integral is

equivalent to the ap-Henstock integral and the integrals are equal.
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Theorem 2.5. The function f : [a, b] → R is ap-Denjoy inte-

grable on [a, b] if and only if f is ap-Henstock integrable on [a, b] and

the integrals are equal.

Proof. If f is ap-Henstock integrable on [a, b] with the primitive

F , then F is ACGs on [a, b] and F ′

ap = f a.e. on [a, b] [3, Theorem

16.18]. By Lemma 2.1, f is ap-Denjoy integrable on [a, b].

Suppose that f is ap-Denjoy integrable on [a, b] with the prim-

itive F . Then F is an AL function on [a, b] such that F is approxi-

mately differentiable a.e. on [a, b] and F ′

ap = f a.e. on [a, b]. Let

E = {x ∈ [a, b] : F ′

ap(x) 6= f(x)} .

Then |E| = 0. Let D = [a, b] − E and let ε > 0.

For each x ∈ D, there exists a measurable set Dx ⊆ [a, b] such

that x ∈ Dd
x and

F ′

ap(x) = lim
y→x
y∈Dx

F (y) − F (x)

y − x
.

So there exists δx > 0 such that for every y ∈ Dx∩(x−δx, x+δx) = Sx

|F (y) − F (x) − F ′

ap(x)(y − x)| ≤ ε|y − x| .

If (x, [u, v]) is a tagged interval that is subordinate to {Sx}, then

|F (v) − F (u) − F ′

ap(x)(v − u)| ≤ |F (v) − F (x) − F ′

ap(x)(v − x)|

+ |F (x) − F (u) − F ′

ap(x)(x − u)|

< ε(v − x) + ε(x − u) = ε(v − u) .

Hence, there exists a choice S ′ on D such that |(P)
∑

f(x)|I| −

(P)
∑

F (I)| < ε(P)
∑

|I|, whenever P is a collection of tagged in-

tervals that is subordinate to S ′.
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By [3, Lemma 9.15] and the fact that F is an AL function on

[a, b], there exists a choice S ′′ on E such that |(P)
∑

f(x)|I|| < ε and

|(P)
∑

F (I)| < ε, whenever P is subordinate to S ′′. Let S = S ′ ∪S ′′.

Then S is a choice on [a, b].

Suppose that P is a tagged partition of [a, b] that is subordinate

to S. Let PE be the subset of P that has tags in E and let PD =

P −PE . Then we have

|(P)
∑

f(x)|I| − (P)
∑

F (I)| ≤ |(PD)
∑

f(x)|I| − (PD)
∑

F (I)|

+ |(PE)
∑

f(x)|I|| + |(PE)
∑

F (I)|

< ε(b − a + 2) .

Hence, f is ap-Henstock integrable on [a, b] and

(AH)

∫ b

a

f = (P)
∑

F (I) = F (b) − F (a) = (AD)

∫ b

a

f,

as desired. �
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