
JOURNAL OF THE

CHUNGCHEONG MATHEMATICAL SOCIETY

Volume 17, No.1, April 2004

ON THE STABILITY OF A GENERAL QUADRATIC

FUNCTIONAL EQUATION AND ITS APPLICATIONS

Kil-Woung Jun* and Hark-Mahn Kim**

Abstract. The aim of this paper is to solve the general solution of

a quadratic functional equation

f(x + 2y) + 2f(x − y) = f(x − 2y) + 2f(x + y)

in the class of functions between real vector spaces and to obtain the

generalized Hyers-Ulam stability problem for the equation.

1. Introduction

In 1940, S.M. Ulam [18] raised a question concerning the stability of

group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·).

Given ǫ > 0, does there exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then

there exists a homomorphism H : G1 → G2 with d(h(x), H(x)) < ǫ for

all x ∈ G1?

In 1978, P.M. Gruber [6] imposed the following more general prob-

lem: “Suppose a mathematical object satisfies a certain property ap-

proximately. Is it then possible to approximate this objects by ob-

jects satisfying the property exactly?” This problem is of particular

interest in probability theory and in the case of functional equations

of different types. First, Ulam’s question for approximately additive

mappings was solved by D.H. Hyers [7] and then generalized by Th.M.

Received by the editors on March 25, 2004.
2000 Mathematics Subject Classifications : Primary 39A11, 39B72.
Key words and phrases: Hyers-Ulam stability, Banach B-module, quadratic

function.

57



58 K. JUN AND H. KIM

Rassias [16]. During the last decades, the stability problems of several

functional equations have been extensively investigated by a number

of authors [2, 5, 8–10, 12, 17]. A stability problem for the quadratic

functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y)(1.1)

was solved by a lot of authors [4, 13, 15]. Recently, Jun and Lee [11]

proved the generalized Hyers-Ulam stability problem for a pexiderized

quadratic equation of (1.1).

In this paper, we investigate the general solution of the following

quadratic functional equation

f(x + 2y) + 2f(x − y) = f(x − 2y) + 2f(x + y)(1.2)

in the class of functions between real vector spaces. In addition, we

establish the generalized Hyers-Ulam stability problem for the equation

(1.2) by the direct method of Hyers, Ulam and Rassias’s theory.

2. General solution of Eq.(1.2)

We here present the general solution of (1.2). Let both E1 and E2

be real vector spaces throughout this paper.

Theorem 2.1. A function f : E1 → E2 satisfies the functional

equation (1.2) if and only if there exist functions B : E1 × E1 → E2,

A : E1 → E2 and a constant c in E2 such that f(x) = B(x, x)+A(x)+c

for all x ∈ E1, where B is symmetric biadditive, and A is additive.

Proof. Let f : E1 → E2 satisfy the functional equation (1.2). If

we put g(x) = f(x) − f(0), we obtain that g is also a solution of

(1.2) and g(0) = 0. So we may assume without loss of generality

that f is a solution of (1.2) and f(0) = 0. Let fe(x) = f(x)+f(−x)
2

,

fo(x) = f(x)−f(−x)
2

for all x ∈ E1. Then fe(0) = 0 = fo(0) and f(x) =

fe(x)+ fo(x), fe is even and fo is odd. Since f is a solution of (1.2), fe

and fo also satisfy the equation (1.2).
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Thus, we may assume that f is a solution of the functional equation

(1.2) and f is odd, f(0) = 0. Putting x = 0 and y = x in (1.2)

separately, we get

f(2y) = 2f(y), f(3y) = 3f(y)

for all y ∈ E1. Thus the equation (1.2) can be written by

f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y),(2.1)

f(x + 2y) + f(−x + 2y) = f(2x + 2y) − f(2x − 2y),(2.2)

which yield

f(u) + f(v) = f(
3u − v

2
) − f(

u − 3v

2
)(2.3)

for all u, v ∈ E1. Replacing x by x − y in (1.2) and using the oddness

of f , one arrives at

f(x + y) + 2f(x − 2y) = f(x − 3y) + 2f(x).(2.4)

Setting y by x− y, x + y in (2.1), separately, we have two equations

f(3x − y) + f(x + y) = 2f(2x − y) + 2f(y),(2.5)

f(3x + y) + f(x − y) = 2f(2x + y) − 2f(y).(2.6)

Using (2.5) and (2.4), one obtains that

f(3x − y) + f(x − 3y)

= 2f(2x − y) + 2f(x − 2y) + 2f(y) − 2f(x).(2.7)

On the other hand, utilizing the equation (2.3) we lead to

f(3x − y) + f(x − 3y) = f(4x) − f(4y) = 4f(x) − 4f(y),(2.8)

which induces by (2.7)

f(2x − y) + f(x − 2y) = 3f(x) − 3f(y).(2.9)

Putting −x + y instead of y in (2.9), one has by the oddness of f

f(3x − y) + f(3x − 2y) = 3f(x) + 3f(x − y).(2.10)
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Replacing y in (2.10) by −y and then adding the resulting relation to

(2.10), we have that

f(3x + y) + f(3x − y) + f(3x + 2y) + f(3x − 2y)

= 6f(x) + 3f(x + y) + 3f(x − y).(2.11)

In turn, it follows from (2.5), (2.6) and (2.1) that

f(3x + y) + f(3x − y) = 3f(x + y) + 3f(x − y),(2.12)

from which we deduce the following relation together with (2.11)

f(3x + 2y) + f(3x − 2y) = 6f(x) = 2f(3x).(2.13)

Here the equation (2.13) is equivalent to f(X+Y )+f(X−Y ) = 2f(X),

which is in fact the Cauchy-Jensen equation. Hence in this case f(x) =

A(x) for some additive mapping A.

Now we second assume that f is a solution of the functional equation

(1.2) and f is even, f(0) = 0. Thus the equation (1.2) is written by

f(x + 2y) + 2f(x − y) = f(x − 2y) + 2f(x + y)(2.14)

for all x, y ∈ E1. Putting y = x and y = x
2

in (2.14) separately, we get

f(3x) = f(x) + 2f(2x),

f(2x) + 2f(
x

2
) = 2f(

3x

2
) = 2f(

x

2
) + 4f(x),

which implies that f(2x) = 4f(x), f(3x) = 9f(x) for all x ∈ E1.

Interchange x and y in (2.14) to get the relation

f(2x + y) + 2f(x − y) = f(2x − y) + 2f(x + y)(2.15)

for all x, y ∈ E1. Setting x by x + y in (2.14), one obtains that

f(x + 3y) + 2f(x) = f(x − y) + 2f(x + 2y)(2.16)

for all x, y ∈ E1. Replacing y by −y in (2.16), we obtain that

f(x − 3y) + 2f(x) = f(x + y) + 2f(x − 2y)(2.17)
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for all x, y ∈ E1. Setting y by x− y in (2.14) and then putting y by 3y

2

in the resulting relation, we have

9f(x − y) +
9

2
f(y) = f(x − 3y) +

1

2
f(4x − 3y).(2.18)

Adding the equation (2.17) to (2.18) side by side, one leads to

9f(x − y) +
9

2
f(y) + 2f(x)

= f(x + y) + 2f(x − 2y) +
1

2
f(4x − 3y)(2.19)

for all x, y ∈ E1. Exchanging x with y in (2.19) and then subtracting

the resulting relation from (2.19), we have

5

2
f(y) −

5

2
f(x) = 2f(x − 2y) − 2f(2x − y)

+
1

2
f(4x − 3y) −

1

2
f(3x − 4y)(2.20)

for all x, y ∈ E1. Replacing x by 4x in (2.17), we get

f(4x − 3y) + 32f(x) = f(4x + y) + 8f(2x − y)(2.21)

for all x, y ∈ E1. Interchanging x and y in (2.21), we have by the

evenness of f

f(3x − 4y) + 32f(y) = f(x + 4y) + 8f(x − 2y)(2.22)

for all x, y ∈ E1. Subtracting (2.22) from (2.21) and dividing it by 2,

we arrive at the equation

1

2
f(4x − 3y) −

1

2
f(3x − 4y) + 16f(x) − 16f(y)

=
1

2
f(4x + y) −

1

2
f(x + 4y) + 4f(2x − y) − 4f(x − 2y).(2.23)
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Combining (2.20) with (2.23), we easily see that

27

2
f(x) −

27

2
f(y)

=
1

2
f(4x + y) −

1

2
f(x + 4y) + 2f(2x − y)− 2f(x − 2y)(2.24)

for all x, y ∈ E1. Putting x + y instead of x in (2.16), we obtain that

f(x + 4y) + 2f(x + y) = f(x) + 2f(x + 3y)(2.25)

for all x, y ∈ E1. Replacing y by 2x + y in (2.15), one obtains that

f(4x + y) + 2f(x + y) = f(y) + 2f(3x + y)(2.26)

for all x, y ∈ E1. Subtraction the equation (2.25) from (2.26) to yield

the relation

f(4x + y) − f(x + 4y)

= 2f(3x + y) − 2f(x + 3y) + f(y) − f(x)(2.27)

for all x, y ∈ E1. Multiplying the equation (2.27) by 1
2
, and then adding

the resulting relation to (2.24), we have

14f(x) − 14f(y)

= 2f(2x − y) − 2f(x − 2y) + f(3x + y)− f(x + 3y)(2.28)

for all x, y ∈ E1.

In turn, interchanging x and y in (2.16) and then subtracting (2.16)

from the resulting relation, one obtains that

f(3x + y) − f(x + 3y) + 2f(y) − 2f(x)

= 2f(2x + y) − 2f(x + 2y)(2.29)

for all x, y ∈ E1. Adding the relation (2.29) to (2.28) side by side and

dividing it by 2, we arrive at the equation

6f(x) − 6f(y)

= f(2x + y)− f(x + 2y) + f(2x − y) − f(x − 2y).(2.30)
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Applying the relations (2.14) and (2.15) to (2.30), we have the following

crucial equation

3f(x) − 3f(y) = f(2x + y) − f(x + 2y)(2.31)

for all x, y ∈ E1.

Now utilizing (2.31) one obtains the following two relations

f(x + y) − f(x −
y

2
) =

1

3
f

(

3(x +
y

2
)
)

−
1

3
f(3x),

f(x − y) − f(x +
y

2
) =

1

3
f

(

3(x −
y

2
)
)

−
1

3
f(3x).

Since f(2x) = 4f(x), f(3x) = 9f(x) for all x ∈ E1, adding the above

two relations we get the equation

f(x + y) + f(x − y) + 6f(x) = f(2x + y) + f(2x − y),(2.32)

which is equivalent to the original quadratic functional equation f(x +

y) + f(x − y) = 2f(x) + 2f(y) [3]. Therefore f(x) = Q(x, x), where Q

is a symmetric biadditive function.

That is, if f : E1 → E2 satisfies the functional equation (1.2), then

f(x) = fe(x) + fo(x) = B(x, x) + A(x) for all x ∈ E1, where B, A are

mappings stated in the theorem. Since we regard f(x) as f(x) − f(0),

we get f(x) = B(x, x) + A(x) + f(0) for all x ∈ E1 and we obtain the

desired results.
Conversely, if there exist function B : E1 × E1 → E2, A : E1 → E2

and a constant c in E2 such that f(x) = B(x, x) + A(x) + c for all

x ∈ E1, where A is additive and B is symmetric biadditive, then it is

obvious that f satisfies the equation (1.2).

3. Generalized Hyers-Ulam stability for (1.2)

We now investigate the Hyers-Ulam stability problem for the equa-

tion (1.2). Thus we find the condition that there exists a true solution

function near an approximate solution function for (1.2). From now

on, let X be a real vector space and let Y be a Banach space unless
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we give any specific reference. Let R
+ denote the set of all nonnegative

real numbers and N the set of all positive integers.

Theorem 3.1. Let φ : X2 → R
+ be a function such that the series

Φ̄(x, y) :=

∞
∑

i=0

φ(2ix, 2iy)

4i

converges for all x, y ∈ X. Suppose that an even function f : X → Y

satisfies

‖f(x + 2y) + 2f(x − y) − f(x − 2y) − 2f(x + y)‖

≤ φ(x, y)(3.1)

for all x, y ∈ X. Then there exists a unique quadratic function Q :

X → Y which satisfies the equation (1.2) and the inequality

‖f(x) − f(0) − Q(x)‖ ≤
1

4
Φ̄(x,

x

2
) +

1

2
Φ̄(

x

2
,
x

2
)(3.2)

for all x ∈ X. The function Q is given by

Q(x) = lim
n→∞

f(2nx)

4n
(3.3)

for all x ∈ X. If further, either f is measurable or for each fixed x ∈ X

the mapping t 7→ f(tx) from R to Y is continuous, then Q(rx) = r2Q(x)

for all r ∈ R.

Proof. If we replace y by x in (3.1), we have

‖f(3x) + 2f(0) − 2f(2x) − f(x)‖ ≤ φ(x, x)(3.4)

for all x ∈ X. Substituting x for 2y in (3.1) and then replacing y by x

in the resulting inequality, one obtains that

‖f(4x) + 2f(x) − f(0) − 2f(3x)‖ ≤ φ(2x, x)(3.5)

for all x ∈ X. Multiplying the relation (3.4) by 2 and then adding it to

(3.5), we have the following relation

‖[f(4x) − f(0)] − 4[f(2x) − f(0)]‖ ≤ φ(2x, x) + 2φ(x, x),(3.6)
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which can be written by

∥

∥

∥

∥

[f(2x) − f(0)]

4
− [f(x)− f(0)]

∥

∥

∥

∥

≤
φ(x, x

2
) + 2φ(x

2
, x

2
)

4
(3.7)

for all x ∈ X.

By induction arguments, it is not difficult to show from (3.7) that

∥

∥

∥

∥

[f(x) − f(0)] −
[f(2nx) − f(0)]

4n

∥

∥

∥

∥

≤
n−1
∑

i=0

φ(2ix, 2i−1x) + 2φ(2i−1x, 2i−1x)

4i+1
(3.8)

for all x ∈ X. Note that the right hand side of (3.8) is a convergent

series by assumption.

In order to prove the convergence of the sequence { [f(2nx)−f(0)]
4n }, we

show that the sequence is a Cauchy sequence in Y. By (3.8), we obtain

that for n > m > 0,

∥

∥

∥

∥

[f(2n) − f(0)]

4n
−

[f(2mx) − f(0)]

4m

∥

∥

∥

∥

=
1

4m

∥

∥

∥

∥

[f(2n−m2mx) − f(0)]

4n−m
− [f(2mx) − f(0)]

∥

∥

∥

∥

(3.9)

≤
n−m−1
∑

i=0

φ(2i2mx, 2i−12mx) + 2φ(2i−12mx, 2i−12mx)

4m+i+1

Since the series
∑∞

i=0
φ(2ix,2iy)

4i converges for all x, y ∈ X, the right hand

side of the inequality (3.9) tends to 0 as m tends to infinity and hence

the sequence { [f(2nx)−f(0)]
4n } is a Cauchy sequence as desired. Therefore,

we may define

Q(x) = lim
n→∞

2−2n[f(2nx) − f(0)] = lim
n→∞

2−2nf(2nx)

for all x ∈ X. By letting n → ∞ in (3.8), we arrive at the formula (3.2).
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To show that Q satisfies the equation (1.2), replace x, y by 2nx, 2ny,

respectively, in (3.1) and divide by 4n, then it follows that

4−n‖f(2n(x + 2y)) + 2f(2n(x− y))

−f(2n(x − 2y)) − 2f(2n(x + y))‖ ≤ 4−nφ(2nx, 2ny).

Taking the limit as n → ∞, we find that Q satisfies (1.2) for all x, y ∈ X.

Obviously, it follows that Q is even since f is even, and hence Q is a

quadratic function by Theorem 2.1.

The proof of the uniqueness of Q with the stated property in the

theorem goes through in the similar way as that of [12]. The proof of

the last assertion in the theorem follows by the same way as that of [4].

This completes the proof of the theorem.

In the next part, we investigate the Hyers-Ulam stability problem

for the equation (1.2) satisfied by an odd function.

Theorem 3.2. Let φ : X2 → R
+ be a function such that the series

Φ(x, y) :=

∞
∑

i=0

φ(2ix, 2iy)

2i

converges for all x, y ∈ X. Suppose that an odd function f : X → Y

satisfies

‖f(x + 2y) + 2f(x − y) − f(x − 2y) − 2f(x + y)‖

≤ φ(x, y)(3.10)

for all x, y ∈ X. Then there exists a unique additive function A : X → Y

which satisfies the equation (1.2) and the inequality

‖f(x) −A(x)‖ ≤
1

4
Φ(0, x)(3.11)

for all x ∈ X. The function A is given by

A(x) = lim
n→∞

f(2nx)

2n
(3.12)
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for all x ∈ X. If further, for each fixed x ∈ X the mapping t 7→ f(tx)

from R to Y is continuous, then A(rx) = rA(x) for all r ∈ R.

Proof. Substituting 0 for x and then replacing y by x, one obtains

that

‖2f(2x) − 4f(x)‖ ≤ φ(0, x),(3.13)

which can be written by

‖
f(2x)

2
− f(x)‖ ≤

φ(0, x)

4
(3.14)

for all x ∈ X.

By induction, it follows from (3.14) that

∥

∥

∥

∥

f(x) −
f(2nx)

2n

∥

∥

∥

∥

≤
1

4

n−1
∑

i=0

φ(0, 2ix)

2i
(3.15)

for all x ∈ X. Note that the right hand side of (3.15) is a convergent

series by assumption.

Now using the same argument as that of Theorem 3.1, we obtain

that the sequence { f(2nx)
2n } is a Cauchy sequence in Y , and hence there

exists a unique function A : X → Y , defined by A(x) = limn→∞
f(2nx)

2n ,

which satisfies the equation (1.2) and the inequality (3.11). It is clear

that A is odd since f is odd, and thus A is additive by Theorem 2.1.

This completes the proof.

Combining Theorem 3.1 and Theorem 3.2, we arrive at the following

Hyers-Ulam stability of the equation (1.2).

Theorem 3.3. Let φ : X2 → R
+ be a function such that the series

Φ(x, y) :=
∞

∑

i=0

φ(2ix, 2iy)

2i
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converges for all x, y ∈ X. Suppose that a function f : X → Y satisfies

‖f(x + 2y) + 2f(x − y) − f(x − 2y) − 2f(x + y)‖

≤ φ(x, y)(3.16)

for all x, y ∈ X. Then there exist a unique quadratic function Q : X →

Y , a unique additive function A : X → Y which satisfy the equation

(1.2) and the inequality

‖
f(x) − f(−x)

2
− A(x)‖ ≤

1

8
Φ(0, x) +

1

8
Φ(0,−x),(3.17)

‖
f(x) + f(−x)

2
− f(0) − Q(x)‖ ≤

1

8
Φ̄(x,

x

2
) +

1

4
Φ̄(

x

2
,
x

2
)

+
1

8
Φ̄(−x,−

x

2
) +

1

4
Φ̄(−

x

2
,−

x

2
),

‖f(x) − f(0) − A(x)− Q(x)‖ ≤
1

8
Φ(0, x) +

1

8
Φ(0,−x)

+
1

8
Φ̄(x,

x

2
) +

1

4
Φ̄(

x

2
,
x

2
)

+
1

8
Φ̄(−x,−

x

2
) +

1

4
Φ̄(−

x

2
,−

x

2
)

for all x ∈ X. The functions Q, A are given by

Q(x) = lim
n→∞

f(2nx) + f(−2nx)

2 · 4n
,

A(x) = lim
n→∞

f(2nx) − f(−2nx)

2n+1
(3.18)

for all x ∈ X. If further, for each fixed x ∈ X the mapping t 7→ f(tx)

from R to Y is continuous, then Q(rx) = r2Q(x), A(rx) = rA(x) for

all r ∈ R.

Proof. If we put g(x) = f(x) − f(0), we obtain that g also satisfies

the inequality (3.16) and g(0) = 0. Let ge(x) = g(x)+g(−x)
2

, go(x) =

g(x)−g(−x)
2

for all x ∈ E1. Then ge(0) = 0 = go(0) and g(x) = ge(x) +
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go(x), ge is even and go is odd. Since g satisfies the inequality (3.16),

both ge and go also satisfy the inequalities

‖ge(x + 2y) + 2ge(x − y)− ge(x − 2y) − 2ge(x + y)‖

≤
φ(x, y) + φ(−x,−y)

2
,(3.19)

‖go(x + 2y) + 2go(x− y) − go(x − 2y) − 2go(x + y)‖

≤
φ(x, y) + φ(−x,−y)

2
(3.20)

for all x, y ∈ X.

In view of Theorem 3.1, we obtain by (3.19) that Q, given by Q(x) =

limn→∞
f(2nx)+f(−2nx)

2·4n , satisfies the equation (1.2) and the inequality

‖
f(x) + f(−x)

2
− f(0) − Q(x)‖ = ‖ge(x) − Q(x)‖(3.21)

≤

∞
∑

i=0

[

φ(2ix, 2i−1x) + 2φ(2i−1x, 2i−1x)

2 · 4i+1

]

+
∞

∑

i=0

[

φ(−2ix,−2i−1x) + 2φ(−2i−1x,−2i−1x)

2 · 4i+1

]

.

Similarly, it follows from (3.20) and Theorem 3.2 that A, defined by

A(x) = limn→∞
f(2nx)−f(−2nx)

2n+1 , satisfies the equation (1.2) and the in-

equality

‖
f(x) − f(−x)

2
−A(x)‖ = ‖go(x)− A(x)‖(3.22)

≤
1

8

∞
∑

i=0

[

φ(0, 2ix)

2i
+

φ(0,−2ix)

2i

]

.

The rest proof of the theorem follows by the same way as that of

Theorem 3.1, Theorem 3.2.
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From the main theorem 3.3, we obtain the following corollary con-

cerning the stability of the equation

f(x + y + z) + f(x − y) + f(x − z) − f(x − y − z)

− f(x + y)− f(x + z) = 0.(3.23)

Corollary 3.4. Let ϕ : X3 → R
+ be a function such that the series

Λ(x, y, z) :=
∞

∑

i=0

φ(2ix, 2iy, 2iz)

2i

converges for all x, y, z ∈ X. Suppose that a function f : X → Y

satisfies

‖f(x + y + z) + f(x − y) + f(x − z) − f(x − y − z)

−f(x + y) − f(x + z)‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ X. Then there exist a unique quadratic function Q :

X → Y , a unique additive function A : X → Y which satisfy both the

equations (1.2), (3.23) and the inequality

‖
f(x) − f(−x)

2
− A(x)‖ ≤

1

8
Λ(0, x, x) +

1

8
Λ(0,−x,−x),

‖
f(x) + f(−x)

2
− f(0) − Q(x)‖ ≤

1

8
Λ̄(x,

x

2
,
x

2
) +

1

4
Λ̄(

x

2
,
x

2
,
x

2
)

+
1

8
Λ̄(−x,−

x

2
,−

x

2
) +

1

4
Λ̄(−

x

2
,−

x

2
,−

x

2
),

‖f(x) − f(0) − A(x)− Q(x)‖ ≤
1

8
Λ(0, x, x) +

1

8
Λ(0,−x,−x)

+
1

8
Λ̄(x,

x

2
,
x

2
) +

1

4
Λ̄(

x

2
,
x

2
,
x

2
)

+
1

8
Λ̄(−x,−

x

2
,−

x

2
) +

1

4
Λ̄(−

x

2
,−

x

2
,−

x

2
)

for all x ∈ X, where Λ̄(x, y, z) :=
∑∞

i=0
φ(2ix,2iy,2iz)

4i . The functions Q, A

are given by (3.18). If further, for each fixed x ∈ X the mapping t 7→
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f(tx) from R to Y is continuous, then Q(rx) = r2Q(x), A(rx) = rA(x)

for all r ∈ R.

Proof. Replacing z by y in the given condition, we obtain that

‖f(x + 2y) + 2f(x − y)− f(x − 2y) − 2f(x + y)‖ ≤ ϕ(x, y, y)

for all x, y ∈ X. If we consider φ(x, y) = ϕ(x, y, y), the conclusion

follows from Theorem 3.3.

Corollary 3.5. Let X and Y be a real normed space and a Banach

space, respectively, and let θ, ε ≥ 0, p < 1 be real numbers. Suppose

that a function f : X → Y satisfies

‖f(x + 2y) + 2f(x − y)− f(x − 2y) − 2f(x + y)‖

≤ θ + ε(‖x‖p + ‖y‖p)(3.24)

for all x, y ∈ X. Then there exist a unique quadratic function Q : X →

Y , a unique additive function A : X → Y which satisfy the equation

(1.2) and the inequality

‖
f(x) − f(−x)

2
− A(x)‖ ≤

θ

2
+

ε‖x‖p

2(2 − 2p)
,(3.25)

‖
f(x) + f(−x)

2
− f(0) − Q(x)‖ ≤ θ +

ε‖x‖p

4 − 2p
+

5ε‖x‖p

2p(4 − 2p)
,

‖f(x) − f(0) − A(x)− Q(x)‖ ≤
3θ

2
+

ε‖x‖p

2(2 − 2p)
+

ε‖x‖p

4 − 2p
+

5ε‖x‖p

2p(4 − 2p)

for all x ∈ X. The functions Q, A are given by (3.18). Moreover, if for

each fixed x ∈ X the mapping t 7→ f(tx) from R to Y is continuous,

then Q(rx) = r2Q(x), A(rx) = rA(x) for all r ∈ R.

Proof. Considering φ(x, y) as θ + ε(‖x‖p + ‖y‖p) in Theorem 3.3, we

obtain easily the conclusions.

By Theorem 3.3, we obtain the following Hyers-Ulam stability of the

equation (1.2).
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Corollary 3.6. Let X and Y be a real normed space and a Banach

space, respectively, and let θ ≥ 0 be a real number. Suppose that a

function f : X → Y satisfies

‖f(x + 2y) + 2f(x − y) − f(x − 2y) − 2f(x + y)‖ ≤ θ(3.26)

for all x, y ∈ X. Then there exist a unique quadratic function Q : X →

Y , a unique additive function A : X → Y which satisfy the equation

(1.2) and the inequality

‖
f(x) − f(−x)

2
− A(x)‖ ≤

θ

2
,(3.27)

‖
f(x) + f(−x)

2
− f(0) − Q(x)‖ ≤ θ,

‖f(x) − f(0) − A(x)− Q(x)‖ ≤
3θ

2

for all x ∈ X. Furthermore, if for each fixed x ∈ X the mapping t 7→

f(tx) from R to Y is continuous, then Q(rx) = r2Q(x), A(rx) = rA(x)

for all r ∈ R.

In the last part of this paper, let B be a unital Banach algebra with

norm | · |, and let BB1 and BB2 be left Banach B-modules with norms

‖ · ‖ and || · ||, respectively. A quadratic function Q : BB1 → BB2 is

called B-quadratic if

Q(ax) = a2Q(x), ∀a ∈ B, ∀x ∈ BB1.

Theorem 3.7. Suppose that a function f : BB1 → BB2 satisfies

||f(αx + 2αy) + 2f(αx − αy) − α2f(x − 2y) − 2α2f(x + y)|| ≤ φ(x, y)

for all α ∈ B (|α| = 1), and for all x, y ∈ BB1, where φ is given as in

Theorem 3.3. If f(tx) is continuous in t ∈ R for each fixed x ∈ BB1,

then there exists a unique B-quadratic function Q : BB1 → BB2, defined

by (3.18), which satisfies the equation (1.2) and the inequality (3.17)

with A = 0.



GENERAL QUADRATIC FUNCTIONAL EQUATION 73

Proof. By Theorem 3.3, it follows from the inequality of the state-

ment for α = 1 that there exist a unique quadratic function Q : BB1 →

BB2 and a unique additive function A : BB1 → BB2, which satisfy the

equation (1.2) and the inequality (3.17). Under the assumption that

f(tx) is continuous in t ∈ R for each fixed x ∈ BB1, the quadratic

function Q : BB1 → BB2 satisfies

Q(tx) = t2Q(x), ∀x ∈ BB1, ∀t ∈ R.

That is, Q is R-quadratic. For each fixed α ∈ B (|α| = 1), putting

y = 0 in the given inequality of the statement we have

Q(αx) = α2Q(x), A(αx) = α2A(x)

for all x ∈ BB1. The last relation is also true for α = 0. Since A

is odd, we obtain from the last equation that for α = −1, −A(x) =

A(−x) = A(x) and hence A = 0 identically. Since Q is R-quadratic and

Q(αx) = α2Q(x) for each element α ∈ B(|α| = 1), for each element

a ∈ B (a 6= 0), a = |a| · a
|a|

and thus

Q(ax) = Q(|a| ·
a

|a|
x) = |a|2 · Q(

a

|a|
x) = |a|2 ·

a2

|a|2
· Q(x)

= a2Q(x), ∀a ∈ B(a 6= 0), ∀x ∈ BB1.

So the unique R-quadratic function Q : BB1 → BB2 is also B-quadratic

as desired. This completes the proof of the theorem.

Theorem 3.8. Suppose that a function f : BB1 → BB2 satisfies

||f(αx + 2αy) + 2f(αx − αy) − αf(x − 2y) − 2αf(x + y)|| ≤ φ(x, y)

for all α ∈ B (|α| = 1), and for all x, y ∈ BB1, where φ is given as in

Theorem 3.3. If f(tx) is continuous in t ∈ R for each fixed x ∈ BB1,

then there exists a unique B-linear function A : BB1 → BB2, defined by

(3.18), which satisfies the equation (1.2) and the inequality (3.17) with

Q = 0.
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Proof. The proof of the theorem follows by the same way as that of

Theorem 3.7.
Since C is a Banach algebra, the Banach spaces E1 and E2 are consid-

ered as Banach modules over C. Thus we have the following corollary.

Corollary 3.9. Suppose that a function f : E1 → E2 satisfies

||f(αx + 2αy) + 2f(αx − αy) − α2f(x − 2y) − 2α2f(x + y)|| ≤ θ

for all α ∈ C (|α| = 1), and for all x, y ∈ E1. If f(tx) is continuous

in t ∈ R for each fixed x ∈ E1, then there exists a unique C-quadratic

function Q : E1 → E2, defined by (3.18), which satisfies the equation

(1.2) and the inequality

‖f(x) − f(0) − Q(x)‖ ≤
3θ

2

for all x ∈ E1.
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