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Abstract. The nonlinearity of a Boolean function f on GF (2)n is

the minimum hamming distance between f and all affine functions on

GF (2)n and it measures the ability of a cryptographic system using

the functions to resist against being expressed as a set of linear equa-

tions. Finding out the exact value of the nonlinearity of given Boolean

functions is not an easy problem therefore one wants to estimate the

nonlinearity using extra information on given functions, or wants to

find a lower bound or an upper bound on the nonlinearity. In this

paper we extend the notion of auto-correlations of Boolean functions

to vector Boolean functions and obtain upper bounds and a lower

bound on the nonlinearity of vector Boolean functions in the context

of their auto-correlations. Also we can describe avalanche character-

istics of vector Boolean functions by examining the extended notion

of auto-correlations.

1. Introduction

The nonlinearity of a Boolean function f on GF (2)n is the minimum

hamming distance between f and all affine functions on GF (2)n and

it measures the ability of a cryptographic system using the functions

to resist against being expressed as a set of linear equations. Finding

out the exact value of the nonlinearity of given Boolean functions is

not an easy problem therefore one wants to estimate the nonlinearity

using extra information on given functions, or wants to find a lower

bound or an upper bound on the nonlinearity when the exact value is
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not easily obtainable. It is well known that the nonlinearity of vector

Boolean functions F on n-dimensional vector space GF (2)n to GF (2)m

is bounded above by 2n−1 −2
n

2
−1. Zhang and Zheng [7] obtained upper

bounds and lower bounds on the nonlinearity of Boolean functions using

the notion of auto-correlation. In this paper we extend the notion

of auto-correlations of Boolean functions to vector Boolean functions
and obtain upper bounds and a lower bound on the nonlinearity of

vector Boolean functions in the context of their auto-correlations. This
result generalizes Zhang and Zheng’s results [7]. Also we can describe

avalanche characteristics of vector Boolean functions by examining the

extended notion of auto-correlations.

2. Basic definitions and properties

In this section, we introduce notations, definitions and well known

properties for cryptographic Boolean functions which will be used in

this paper. Let GF (2)n be an n-dimensional vector space over the

Galois field GF (2). Put GF (2)n∗ = GF (2)n − {0}. A function f

from GF (2)n to GF (2) is called a Boolean function on GF (2)n. Let

Bn denote the set of all Boolean functions on GF (2)n. Let f ∈ Bn

be a Boolean function. The truth table of f is a (0, 1)-sequence de-

fined by (f(a0), f(a1), · · · , f(a2n−1)) where a0 = (0, 0, · · · , 0), a1 =

(0, 0, · · · , 1), · · · , a2n−1 = (1, 1, · · · , 1) . The sequence of f is a (1,−1)-

sequence defined by ((−1)f(a0), (−1)f(a1), · · · , (−1)f(a2n
−1)) where each

exponent is regarded as being real-valued. Let a = (a1, · · · , an) and

b = (b1, · · · , bn) be two vectors (or sequences), the scalar product of

a and b denoted by < a, b > is defined as the sum of the component-

wise multiplications. In particular, when a and b are (0, 1)-sequences,

< a, b >= a1b1 ⊕ · · · ⊕ anbn , where the addition and multiplications

are over GF (2), and when a and b are (1,−1)-sequences, < a, b >=

a1b1 + · · ·+anbn where the addition and multiplications are over the re-

als. A function f ∈ Bn that takes the form of f(x) = a1x1 + · · ·+ anxn
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where aj ∈ GF (2), j = 1, 2, · · · n is called an affine function. The

Hamming weight W (x) of x ∈ GF (2)n is the number of ones in x.

The Hamming distance between two functions f and g is defined by

# {x|f(x) 6= g(x)}. We denote it by wt(f + g). The minimal dis-

tance between f and any affine function from GF (2)n into GF (2) is

the nonlinearity of f , that is,

N(f) = min
φ∈Γ

wt(f + φ)

where Γ is the set of all affine functions over GF (2)n. The nonlinearity

of Boolean functions measures the ability of a cryptographic system

using the functions to resist against being expressed as a set of linear

equations. It is known that the nonlinearity of arbitrary Boolean func-

tion is bounded above by N(f) ≤ 2n−1 − 2
n

2
−1. A function with this

maximal nonlinearity is called a bent function and exists if and only if

n is even. The Walsh–Hadamard transformation of a Boolean function

f is defined as Wf(a) =
∑

x∈GF (2)n
(−1)f(x)+<a,x>, for a ∈ GF (2)n .

Since Wf (a) = wt(f(x)+ < a, x >) −wt(f(x)+ < a, x > +1), we have

N(f) = 2n−1 −
1

2
max

a∈GF (2)n

|Wf (a)|.

Since a bent function has the maximal nonlinearity 2n−1 − 2
n

2
−1,

equivalently, a bent function is defined as a Boolean function with

Wf (a) = ±2
n

2 for all a ∈ GF (2)n.

Cryptographic applications, such as the design of strong substitution

boxes, require that when input coordinates of a Boolean function are

selected independently, at random, the output of the function must

behave as a uniformly distributed random variable. This yields to the

definition of balancedness. A Boolean function f ∈ Bn is balanced if

#{x ∈ GF (2)n|f(x) = 0} = #{x ∈ GF (2)n|f(x) = 1}.

Both linear functions and affine functions are balanced functions.
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We say a Boolean function f satisfies the propagation criterion (PC)

with respect to a vector a ∈ GF (2)n if and only if # {x ∈ GF (2)|f(x+

a) = f(x)} = 2n−1 or equivalently f(x + a) + f(x) is balanced. A

Boolean function is said to satisfy k-th order propagation characteristic

if it is balanced for all a ∈ GF (2)n with 1 ≤ wt(a) ≤ k. For a Boolean

function f , if f(x + a) + f(x) is a constant for a ∈ GF (2)n, a is called

a linear structure of f . The following results can be found in [6].

Lemma 2.1. Let Bn be a Boolean function on GF (2)n. Then the

following statements are equivalent.

(1) f is bent.

(2) < ξ, l >= ±2
1

2 for any affine sequence l of length 2n , where ξ is

the sequence of f .

(3) f(x) + f(x + a) is balanced for any nonzero a ∈ GF (2)n.

Lemma 2.2. Let f be a bent function. Then the following holds.

(1) f satisfies PC of degree k for all 1 ≤ k ≤ n.

(2) f has maximum nonlinearity.

(3) f has no linear structure.

(4) f is not balanced.

(5) f satisfies SAC.

Given a Boolean function f on GF (2)n and a vector a ∈ GF (2)n,

we denote by ξ(a) the sequence of f(x + a). The auto-correlation of f

with a shift a is defined by ∆f(a) = < ξ(0), ξ(a) >. To further simplify

our discussions, ∆f(a) will be written as ∆(a) if the function under

consideration is clear. Obviously, ∆(a) = 0 if and only if f(x)+f(x+a)

is balanced, and |∆(a)| = 2n if and only if f(x)+f(x+a) is a constant,

i.e., a is a linear structure of f . The following lemmas on upper bounds

and a low bound on nonlinearity of Boolean functions [7] will be used

in Section 3.

Lemma 2.3. For any Boolean function f on GF (2)n, the nonlinearity

of f satisfies
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Nf ≤ 2n−1 −
1

2
4

√

√

√

√22n +
2n−1

∑

j=1

∆2(aj).

It is easy to verify that the bound does not exceed the well known

bound 2n−1 −2
1

2
n−1 . In addition, as the equality holds if f is bent, the

bound is tight.

Lemma 2.4. For any Boolean function f on GF (2)n, the nonlinearity

of f satisfies

Nf ≤ 2n−1 −
1

2

√

2n + ∆max

where ∆max = max{|∆(a)||a ∈ GF (2)n∗}.

Lemma 2.5. For any Boolean function f on GF (2)n, the nonlinearity

of f satisfies

Nf ≥ 2n−2 −
1

4
∆min

where ∆min = min{|∆(a)||a ∈ GF (2)n∗}.

3. Auto-correlation and bounds on the nonlinearities of vector

Boolean functions

Now we introduce vector Boolean functions and extend the notion
of auto-correlation of Boolean functions to vector Boolean functions
and derive upper bounds and a lower bound of nonlinearity of vector

Boolean functions in terms of those notions.
A function F : GF (2)n → GF (2)m is called a vector Boolean func-

tion on GF (2)n. When n ≤ m, F is said to be balanced if and only if

{x ∈ GF (2)n|F (x) = b} = 2n−m for any b ∈ GF (2)m. Note that if a

basis of GF (2)m over GF (2) is specified, there are unique boolean func-

tions fi’s such that F = (f1, f2, · · · , fm). We denote by b·F the Boolean
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function b1f1 + b2f2 + · · · + bmfm for b = (b1, b2, · · · , bm) ∈ GF (2)m.

The nonlinearity of F , N(F ), is defined as

N(F ) = min
b∈GF (2)m

N(b · F ) = min
b6=0,φ∈Γ

wt(b · F + φ)

where Γ is the set of all affine functions over GF (2). It is known that

the nonlinearity of arbitrary vector boolean function is bounded above

by N(F ) ≤ 2n−1 − 2
n

2
−1. A function with this maximal nonlinearity is

called a bent function and exists if and only if n ≥ 2m and n is even.

Equivalently, a bent function can be defined as a Boolean function

with Wb·F (a) = ±2
n

2 for all a ∈ GF (2)n and b ∈ GF (2)m. A bent

function has cryptographically ideal nonlinearity, but it is not balanced

and is only defined over vector spaces with even dimension. Also F is

bent if and only if b · F is bent for any b ∈ GF (2)n∗. The following

Lemma follows immediately from the definition of bent function [1, 2]

and Lemma 2.14 in [4].

Lemma 3.1. Let F be a bent function. Then for any vector b in

GF (2)m∗ we have the followings:

(1) b · F satisfies PC of degree k for all 1 ≤ k ≤ n.

(2) b · F satisfies SAC.

(3) b · F has maximum nonlinearity.

(4) b · F has no linear structure.

(5) b · F is not balanced.

We define the auto-correlation ∆F (a) of F with a shift a as follows.

Definition 3.1. Let F be a vector Boolean function on GF (2)n to

GF (2)m. For any vector a ∈ GF (2)n the auto-correlation of F with a

shift a is defined as

∆F (a) = (
1

2m − 1

∑

b6=0

∆2
b·F (a))

1

2 .
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By definition if ∆F (a) = 0 , b ·F satisfies Propagation Characteristic

for all b ∈ GF (2)n∗ and a. The converse is also true. Now we want to

derive upper bounds and a lower bound on linearity of vector Boolean

functions.

Theorem 3.2. For any vector Boolean function F on GF (2)n, the

nonlinearity of F satisfies

NF ≤ 2n−1 −
1

2
4

√

√

√

√22n +
2n−1

∑

j=1

∆2
F (aj).

Proof. Firstly, for b∗ in GF (2)m∗ we may assume the following equal-

ity holds.

∑2n−1

j=1 ∆2
F (aj) = max{

∑2n−1

j=1 ∆2
b·F (aj)|b ∈ GF (2)m∗}.

The right hand-side of the inequality of Theorem 3.2 is

2n−1 − 1
2

4

√

22n +
∑2n−1

j=1 ∆2
F (aj)

= 2n−1 − 1
2

4

√

22n +
∑2n−1

j=1
1

2m−1

∑2n−1

j=1 ∆2
b·F (aj)

≥ 2n−1 − 1
2

4

√

22n + 1
2m−1

∑

b6=0

∑2n−1

j=1 ∆2
b∗·F(aj)

= 2n−1 − 1
2

4

√

22n +
∑2n−1

j=1 ∆2
b∗·F (aj) (By definition of b∗ )

≥ Nb∗·F (By Lemma 2.3.)

≥ NF . (By definition of N(F ))

Theorem 3.3. For any vector Boolean function F on GF (2)n, the

nonlinearity of F satisfies

NF ≤ 2n−1 −
1

2

√

2n + ∆max
F

where ∆max
F = max{∆F(a)|a ∈ GF (2)n∗}.
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Proof. For a∗ ∈ GF (2)n∗ and b∗ ∈ GF (2)m∗ we may assume the

following equality holds.

∆2
b∗·F

(a∗) = max{∆2
b·F(a∗)|b∗ ∈ GF (2)m∗}.

The right hand-side of the inequality of Theorem 3.3 is

2n−1 − 1
2

√

2n + ∆max
F

= 2n−1 − 1
2

√

2n + ∆F (a∗) (By definition of a∗)

= 2n−1 − 1
2

√

2n + ( 1
2m−1

∑

b6=0 ∆2
b·F (a∗))

1

2

= 2n−1 − 1
2

√

2n + ( 1
2m−1

∑

b6=0 ∆2
b∗·F

(a∗))
1

2 (By definition of b∗)

= 2n−1 − 1
2

√

2n + ∆b∗·F (a∗)

= 2n−1 − 1
2

√

2n + ∆max
b∗·F

(By definition of ∆max
b∗·F

)

≥ Nb∗·F (By Lemma 3.3.)

≥ NF . (By definition of N(F ))

Theorem 3.4. For any vector Boolean function F on GF (2)n, the

nonlinearity of F satisfies

NF ≥ 2n−2 −
1

4
∆min

F

where ∆min
F = max{∆min

b·F |b ∈ GF (2)m∗}.

Proof. It follows immediately from the definition of ∆min
F .

All theorems above are independent of the dimension of codomain

of F .

The overall avalanche characteristic of a function f can be measured

by examining |∆(a)| for all nonzero vectors a. We can say that a

function has a good GAC(Global Avalanche Characteristic) if for most

nonzero a, |∆(a)| is zero or very close to zero. This observation leads

us to the following definition [5, 6, 7]. Let F : GF (2)n → GF (2)m be a

vector Boolean function. We define the sum-of-square indicator σF for
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the global avalanche characteristics of F by

σF =
∑

∆2
F (a) =

∑

a

1

2m − 1

∑

b6=0

∆2
b·F (a)

and the absolute indicator ∆F for the global avalanche characteristic

of F by

∆F = max{∆F(a)|a ∈ GF (2)n∗}.

The smaller σF and ∆F the better the GAC of a function F . Also in

general the larger the nonlinearity the smaller(i.e. the better) the GAC

of a function F .

Proposition 3.5. Let F : GF (2)n → GF (2)m be a vector Boolean

function on GF (2)n. Then we have

(1) 22n ≤ σf ≤ 23n

(2) σF = 22n if and only if F is a bent function.

(3) σF = 23n if and only if F is an affine function.

Proof. It follows immediately from definition of σF and Theorem 3.2

in [4].

By definition ∆F is the maximum among ∆F (a), a 6= 0 and for any b

in GF (2)m∗ ∆b·F (a) = ±2n if and only if a is a linear structure of b ·F .

Thus the following result is straightforward.

Proposition 3.6. Let F : GF (2)n → GF (2)m be a vector Boolean

function on GF (2)n. Then we have 0 ≤ ∆F ≤ 2n. Moreover, ∆F = 0

if and only if F is a bent function.
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