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SEMI–COMPATIBILITY AND FIXED

POINT THEOREM IN MENGER SPACE
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Abstract. In this paper, the concept of semi-compatibility in Menger

space is introduced and it is used to prove results on the existence of

a unique common fixed point of four self-maps. These results are a

very wide improvement of Mishra [8], Dedeic and Sarapa [3, 4], Cain

and Kasril [1], and Sehgal and Bharucha Reid [10].

1. Introduction

In [8], Mishra introduced the concept of compatible self-maps in

Menger space and proved the existence of a common fixed point

of a pair of compatible maps using a contractive condition. Cho,

Sharma and Sahu [2] introduced the non-symmetric concept of semi-

compatibility maps in a d-topological space. They defined a pair of

self-maps (S, T ) to be semi-compatible of self-maps if the conditions

(i) Sy = Ty implies STy = TSy and (ii) Sxn → x, Txn → x imply

STxn → Tx, as n → ∞, hold. However, (ii) implies (i), taking xn = y

and x = Ty = Sy. So we define the concept of semi-compatibility of

a pair of self-maps in Menger space by the condition (ii) only.

2. Preliminaries

Throughout this paper we use all symbols and basic definitions of

Mishra [8].
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2 B. SINGH AND S. JAIN

Definition 2.1. A mapping F : R → R
+ is called a distribution

if it is non-decreasing left continuous with inf{F (t) | t ∈ R} = 0 and

sup{F (t) | t ∈ R} = 1.

We shall denote by L the set of all distribution functions and denote

by H the specific distribution function defined by

H(t) =

{

0, t ≤ 0

1, t > 0.

Definition 2.2. ([7]) A probabilistic metric space (PM-space) is

an ordered pair (X,F ) where X is an abstract set of elements and

F : X × X → L is defined by (p, q) → Fp,q. Here the functions Fp,q

satisfy the following :

(1) Fp,q(x) = 1 for all x > 0 if and only if p = q,

(2) Fp,q(0) = 0,

(3) Fp,q = Fq,p,

(4) if Fp,q(x) = 1 and Fq,r(y) = 1 then Fp,r(x + y) = 1.

Definition 2.3. A mapping t : [0, 1] × [0, 1] → [0, 1] is called a

t-norm if

(1) t(a, 1) = a, t(0, 0) = 0,

(2) t(a, b) = t(b, a),

(3) t(c, d) ≥ t(a, b) for c ≥ a and d ≥ b,

(4) t(t(a, b), c) = t(a, t(b, c)).

Definition 2.4. A Menger space is a triplet (X,F, t), where

(X,F ) is a PM-space and t is a t-norm such that for all p, q, r ∈ X

and all x, y ≥ 0

Fp,r(x + y) ≥ t(Fp,q(x), Fq,r(y)).

Definition 2.5. A sequence {pn} in X is said to converge to a

point p in X, written as pn → p, if for each ǫ > 0 and each λ > 0 there
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is an integer M(ǫ, λ) such that Fpn,p(ǫ) > 1−λ for all n ≥ M(ǫ, λ). A

sequence {pn} in X is said to be a Cauchy sequence if for each ǫ > 0

and each λ > 0 there is an integer M(ǫ, λ) such that Fpn,pm
(ǫ) ≥ 1−λ

for all n,m ≥ M(ǫ, λ). A Menger space (X,F, t) is said to be complete

if every Cauchy sequence in X converges to a point in X.

Definition 2.6. Self-maps A and S of a Menger space (X,F, t)

are said to be weakly compatible or coincidentally commuting if they

commute at their coincidence points, i.e., if Ap = Sp for some p ∈ X

then ASp = SAp.

Definition 2.7. Self-maps A and S of a Menger space (X,F, t)

are said to be compatible if FASpn,SApn
(x) → 1 for all x > 0 whenever

{pn} is a sequence in X such that Apn, Spn → u as n → ∞ for some

u ∈ X.

Here we introduce the notion of semi-compatiblemappings in Menger

space.

Definition 2.8. Self-maps A and S of a Menger space (X,F, t) are

said to be semi-compatible if FASpn,Su(x) → 1 for all x > 0 whenever

{pn} is a sequence in X such that Apn, Spn → u as n → ∞ for some

u ∈ X.

Definition 2.9. Let S and T be multivalued maps on a Menger

space. A sequence {x0, x1, x2, · · · } such that x1 ∈ Tx0, x2 ∈ STx0,

x3 ∈ TSTx0, · · · , is said to be an orbit of S and T at x0 and is

denoted by O(T, S, x0). The orbit is said to be complete if every

Cauchy sequence in X converges to a point in X.

Proposition 2.1. Let A,B, S, T be self-maps of a Menger space

(X,F, t) such that A(X) ⊂ T (X) and B(X) ⊂ S(X). For x0 ∈ X,

define sequences {xn} and {yn} as follows:

Ax2n = Tx2n+1 = y2n+1 & Bx2n+1 = Sx2n+2 = y2n+2
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for n = 0, 1, 2 · · · . Then

(1) {x0, x1, x2, · · · } = O(T−1A,S−1B, x0),

(2) {y1, y2, y3, · · · } = O(BT−1, AS−1, Ax0).

Proof. It is easy to show that Ax0 = Tx1 implies x1 ∈ T−1Ax0

and Bx1 = Sx2 gives x2 ∈ S−1Bx1 ⊂ (S−1B)(T−1A)x0, and so on.

Hence (1) is true. Again, y1 = Ax0, y2 = Bx1 ∈ BT−1(Ax0).

Similarly, y3 = Ax2 ⊂ A(S−1B)(T−1A)x0 = (AS−1)(BT−1)Ax0 ,

and so on. This gives (2). �

Proposition 2.2. In a Menger space (X,F, t), if t(x, x) ≥ x for

all x ∈ [0, 1] then t(a, b) = min{a, b} for all a, b ∈ [0, 1].

Proposition 2.3. If (A,S) is a semi-compatible pair of self-maps

of a Menger space (X,F, t), where t(x, x) ≥ x for all x ∈ [0, 1] and S

is continuous, then (A,S) is compatible.

Proof. Consider a sequence {xn} in X such that {Axn} → u and

{Sxn} → u. Since S is continuous, SAxn → Su and S2xn → Su.

Since (A,S) is semi-compatible, ASxn → Su. Hence for a given pair

(ǫ, λ) there is an integer N0(ǫ, λ) such that

FASxn,Su(
ǫ

2
) ≥ 1 − λ & FSAxn,Su(

ǫ

2
) ≥ 1 − λ

for all n ≥ N0. Now

FASxn,SAxn
(ǫ) ≥ t(FASxn,Su(

ǫ

2
), FSAxn,Su(

ǫ

2
))

≥ t(1 − λ, 1 − λ)

≥ 1 − λ

for all n ≥ N0. Hence the pair (A,S) is compatible. �



SEMI–COMPATIBILITY AND FIXED POINT THEOREM 5

Proposition 2.4. If (A,S) is a compatible pair of self-maps of a

Menger space (X,F, t), where t(x, x) ≥ x for all x ∈ [0, 1] and S is

continuous, then (A,S) is semi-compatible.

Proof. Consider a sequence {xn} in X such that {Axn} → u and

{Sxn} → u. Since S is continuous, SAxn → Su. Since (A,S) is

compatible, for a given pair (ǫ, λ) there is an integer N0(ǫ, λ) such

that

FASxn,SAxn
(
ǫ

2
) ≥ 1 − λ & FSAxn,Su(

ǫ

2
) ≥ 1 − λ

for all n ≥ N0. Now

FASxn,Su(ǫ) ≥ t(FASxn,SAxn
(
ǫ

2
), FSAxn,Su(

ǫ

2
))

≥ t(1 − λ, 1 − λ)

≥ 1 − λ

for all n ≥ N0. Hence ASxn → Su, i.e., the pair (A,S) is semi-

compatible. �

Proposition 2.5. ([10]) If (X, d) is a metric space, then the metric

d induces a mapping F : X × X → L, defined by Fp,q(x) = H(x −

d(p, q)), p, q ∈ X and x ∈ R. Further, if t : [0, 1] × [0, 1] → [0, 1] is

defined by t(a, b) = min{a, b}, then (X,F, t) is a Menger space. It is

complete if (X, d) is complete.

The space (X,F, t) is called an induced Menger space.

Now we give an example of a pair of self-maps (S, T ) which is

semi-compatible but not compatible. Further, we show that the semi-

compatibility of the pair (S, T ) need not imply the semi-compatibility

of (T, S).

Example 2.1. Let (X, d) be a metric space and (X,F, t) the in-

duced Menger space with Fp,q(ǫ) = H(ǫ− d(p, q)) for all p, q ∈ X and
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all ǫ > 0, where X = [0, 1]. Define self-maps S and T as follows;

S(x) =











x, if 0 ≤ x <
1

2

1, if
1

2
≤ x ≤ 1

T (x) =











1 − x, if 0 ≤ x <
1

2

1, if
1

2
≤ x ≤ 1.

And xn = 1

2
− 1

n
. Then

FSxn, 1
2
(ǫ) = H(ǫ −

1

n
).

So

lim
n→∞

FSxn, 1
2
(ǫ) = H(ǫ) = 1.

Hence Sxn → 1

2
as n → ∞. Similarly, one can show that Txn → 1

2

as n → ∞.

Now

FSTxn,TSxn
(ǫ) = H(ǫ − (

1

2
−

1

n
)).

So

lim
n→∞

FSTxn,TSxn
(ǫ) = H(ǫ −

1

2
) 6= 1

for each ǫ > 0. Hence (S, T ) is not compatible.

On the other hand,

lim
n→∞

FSTxn,Tx(ǫ) = lim
n→∞

FSTxn,1(ǫ) = H(ǫ − (1 − 1)) = 1.

Thus (S, T ) is not semi-compatible.

Example 2.2. Let (X,F, t), S and {xn} be given as Example

2.1, and I the identity map on X. Then {Ixn} = {xn} → 1

2
and

{Sxn} → 1

2
.

Now {ISxn} = {Sxn} → 1

2
6= S(1

2
). Thus (I, S) is not semi-

compatible.

On the other hand, for a sequence {xn} in X such that {xn} → x

and {Sxn} → x, we have {SIxn} = {Sxn} → x = Ix. Thus (S, I) is

semi-compatible.

The above example gives an important aspect of semi-compatibility.
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Lemma 2.6. ([11]) Let {pn} be a sequence in a Menger space

(X,F, t) with continuous t-norm and t(x, x) ≥ x for all x ∈ [0, 1].

Assume that there is a k ∈ (0, 1) such that for all x > 0 and all n ∈ N

Fpn,pn+1
(kx) ≥ Fpn−1,pn

(x).

Then the sequence {pn} is a Cauchy sequence in X.

Lemma 2.7. Let A,B, S and T be self-maps of a Menger space

(X,F, t), where t(a, b) = min{a, b}, ∀a, b ∈ [0, 1], satisfying

(1) A(X) ⊂ T (X), B(X) ⊂ S(X),

(2) there exists k ∈ (0, 1) and x0 ∈ X such that

FAp,Bq(kx) ≥ min{FAp,Sp(x), FSq,Tq(x), FSp,Tq(x),

FAp,Tq(αx), FBq,Sp((2 − α)x)}

for all p, q ∈ O(T−1A,S−1B, x0), all α ∈ (0, 1] and all x > 0. Then

the sequence {yn}, defined by

(2.1) Ax2n = Tx2n+1 = y2n+1 and Bx2n+1 = Sx2n+2 = y2n+2

for all n = 0, 1, 2, · · · , is a Cauchy sequence in X.

Proof. Putting p = x2n and q = x2n+1 in the condition (ii) and

using the equation (2.1) and the properties of t-norm, we have

Fy2n+1,y2n+2
(kx) = FAx2n,Bx2n+1

(kx)

≥ min{FAx2n,Sx2n
(x), FBx2n+1,Tx2n+1

(x), FSx2n ,Tx2n+1
(x),

FAx2n,Tx2n+1
((1 − λ)x), FSx2n ,Bx2n+1

((1 + λ)x)}

= min{Fy2n+1,y2n
(x), Fy2n+1 ,y2n+2

(x), Fy2n ,y2n+1
(x),

Fy2n+1,y2n+1
((1 − λ)x), Fy2n+2 ,y2n

((1 + λ)x)}

= min{Fy2n+1,y2n
(x), Fy2n+1 ,y2n+2

(x), 1, Fy2n ,y2n+2
((1 + λ)x)}

≥ min{Fy2n,y2n+1
(x), Fy2n+1 ,y2n+2

(λx)}
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for λ ∈ (0, 1), since

Fy2n,y2n+2
((1 + λ)x) ≥ min{Fy2n,y2n+2

(x), Fy2n+1 ,y2n+2
(λx)}.

Since t is continuous and a distribution function is left continuous, we

have

Fy2n+1,y2n+2
(kx) ≥ min{Fy2n,y2n+1

(x), Fy2n+1,y2n+2
(x)}

as λ → 1.

Similarly, one can show that

Fy2n+2,y2n+3
(kx) ≥ min{Fy2n+1,y2n+2

(x), Fy2n+2 ,y2n+3
(x)}.

Hence we can write

Fyn,yn+1
(kx) ≥ min{Fyn−1,yn

(x), Fyn ,yn+1
(x)}

for n = 2, 3, · · · . Consequently,

Fyn,yn+1
(x) ≥ min{Fyn−1,yn

(k−1x), Fyn ,yn+1
(k−1x)}.

By repeating the above argument, we get

Fyn,yn+1
(x) ≥ min{Fyn−1,yn

(k−ix), Fyn ,yn+1
(k−ix)}.

Since Fyn,yn+1
(k−ix) → 1 as i → ∞, it follows that

Fyn,yn+1
(kx) ≥ Fyn−1,yn

(x)

for all n ∈ N and all x > 0.

Therefore, by Lemma 2.6, {yn} is a Cauchy sequence in (X,F, t),

as desired. �
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3. Main results

Theorem 3.1. Let A,B, S and T be self-maps of a Menger space

(X,F, t), where t(a, b) = min{a, b} for all a, b ∈ [0, 1], satisfying (i) and

(ii) for all q ∈ X and all p ∈ O(BT−1, AS−1, Ax0)∪O(T−1A,S−1B, x0),

and

(1) the pair (A,S) is semi-compatible and the pair (B,T ) is

weakly compatible,

(2) one of A and B is continuous,

(3) for some x0 ∈ X, the orbit O(BT−1 , AS−1, Ax0) is complete.

Then A,B, S and T have a unique common fixed point.

Proof. Define sequences {xn} and {yn} in X such that y2n+1 =

Ax2n = Tx2n+1 and y2n+2 = Bx2n+1 = Sx2n+2 for n = 0, 1, 2, · · · .

By Lemma 2.7, {yn} is a Cauchy sequence. Since O(BT 1 , AS−1, Ax0)

is complete, the sequence {yn} converges to u ∈ X. The subsequences

{Ax2n}, {Bx2n+1}, {Sx2n} and {Tx2n+1} converge to u, i.e.,

{Ax2n} → u, {Bx2n+1} → u,(3.1)

{Sx2n} → u, {Tx2n+1} → u.(3.2)

Case 1. When S is continuous:

Since S is continuous,

(3.3) SAx2n → Su, S2x2n → Su.

And the semi-compatibility of (A,S) gives

(3.4) ASx2n → Su.

Since the condition (ii) holds for all α, we can take α = 1.
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Step I: Put p = Sx2n and q = x2n+1. Then we get

FASx2n,Bx2n+1
(kx) ≥ min{FASx2n,SSx2n

(x),FBx2n+1,Tx2n+1
(x),

FSSx2n,Tx2n+1
(x), FASx2n ,Tx2n+1

(x),FBx2n+1,SSx2n
(x)}.

Letting n → ∞, and using (3.3) and (3.4) and the properties of t-

norm, we get

FSu,u(kx) ≥ min{FSu,Su(x), Fu,u(x), FSu,u(x), FSu,u(x), Fu,Su(x)}.

Thus

FSu,u(x) ≥ FSu,u(k−1x).

By repeating the above process, we get

FSu,u(x) ≥ FSu,u(k−1x) ≥ FSu,u(k−2x) ≥ · · · ≥ FSu,u(k−ix) ≥ · · · ,

which tends to 1 as i → ∞. Hence FSu,u(x) ≥ 1 implies that

FSu,u(x) = 1 for all x greater than zero. This gives Su = u.

Step II: Put p = u and q = x2n+1. Then we get

FAu,Bx2n+1
(kx) ≥ min{FAu,Su(x),FBx2n+1,Tx2n+1

(x),

FSu,Tx2n+1
(x),FAu,Tx2n+1

(x), FBx2n+1,Su(x)}.

Letting n → ∞, and using (3.1) and (3.4) and the properties of t-

norm, we get

FAu,u(kx) ≥ min{FAu,u(x), Fu,u(x), Fu,u(x), FAu,u(x), Fu,Au(x)}

for all x > 0. Thus

FAu,u(kx) ≥ FAu,u(x)

for all x > 0. By the same reasoning as in Step I, we can show that

u = Au. Hence

(3.5) u = Au = Su.
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Since A(X) ⊂ T (X), there is a w ∈ X such that Au = Tw. Thus

(3.6) u = Au = Su = Tw.

Step III: Put p = x2n and q = w. Using the properties of t-norm

and (3.6), we get

FAx2n,Bw(kx) ≥ min{FAx2n,Sx2n
(x),FBw,Tw(x),

FSx2n,Tw(x), FAx2n,Tw(x),FBw,Sx2n
(x)}.

Letting n → ∞, and using (3.1) and (3.6), we get

Fu,Bw(kx) ≥ min{Fu,u(x), Fu,u(x), FBw,u(x), Fu,Bu(x), FBw,u(x)}

for all x > 0. Thus

Fu,Bw(kx) ≥ FBw,u(x)

for all x > 0. By the same reasoning as in Step I, we can show that

u = Bw. Hence

Bw = Tw = u.

Since (B,T ) is weak-compatible, TBw = BTw gives

(3.7) Bu = Tu.

Step IV: Put p = u and q = u. Using the properties of t-norm,

(3.5) and (3.7), we get

FAu,Bu(kx) ≥ min{FAu,Su(x),FBu,Su(x),

FSu,Tu(x),FAu,Tu(x), FBu,Su(x)} ≥ FBu,u(x).

So

FBu,u(kx) ≥ FBu,u(x).



12 B. SINGH AND S. JAIN

By the same reasoning as in Step I, we can show that u = Bu = Tu.

Hence by (3.5)

u = Au = Su = Tu.

That is, u is a common fixed point of A,B, S and T .

Case 2. When A is continuous:

Since A is continuous, we have ASx2n → Au. The semi-compatibility

of (A,S) gives ASx2n → Su. By the uniqueness of limit in a Menger

space, we get Au = Su and the rest of the proof is similar to the proof

of Case 1.

Uniqueness : Let z be another common fixed point of A,B, S and

T . Then z = Az = Bz = Sz = Tz. Put p = u and q = z. Letting

α = 1 in (ii), we get

FAu,Bz(kx) ≥ min{FAu,Su(x),FBz,Tz(x),

FSu,Tz(x),FAu,Tz(x), FBz,Su(x)}.

That is,

Fu,z(kx) ≥min{Fu,u(x), Fz,z(x), Fu,z(x), Fu,z(x), Fu,z(x)}

min{Fu,z(x), Fu,z(x)} ≥ Fu,z(x)

for all x > 0. By the same reasoning as in Step I, we can show that

u = z. Therefore, u is a unique common fixed point of A,B, S and T ,

as desired. �

Corollary 3.2. Let k ∈ (0, 1) be fixed. Let A,B, S and T

be self-maps of a complete Menger space (X,F, t), where t(a, b) =

min{a, b}, satisfying (i) and (ii) for all p ∈ O(BT−1, AS−1, Ax0) ∪

O(T−1A,S−1B, x0) and all q ∈ X, (3) in Theorem 3.1, and

(1) the pairs (A,S) and (B,T ) are semi-compatible,

(2) one of A,B, S and T is continuous.
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Then A,B, S and T have a unique common fixed point.

Proof. The semi-compatibility implies the weak-compatibility. The

proof follows from Theorem 3.1. �

In [8], Mishra proved the following.

Theorem 3.3. ([8]) Let A,B, S and T be self-maps of a Menger

space (X,F, t), with a continuous t-norm with t(x, x) ≥ x for all

x ∈0, 1), satisfying (i) and

(1) for all p, q ∈ X, all x > 0 and some k ∈ (0, 1),

FAp,Bq(kx) ≥t(FAp,Sp(x), t(FBq,Tq(x), t(FAp,Tq(x),

t(FAp,Tq(αx), FBq,Sp(2 − α)(x))))),

(2) the pairs (A,S) and (B,T ) are compatible,

(3) S and T are continuous.

Then A,B, S and T have a unique common fixed point.

Remark 3.1. In view of Proposition 2.2, let t(a, b) = min{a, b}.

Then (1) in Theorem 3.3 becomes

FAp,Bq(kx) ≥min{FAp,Sp(x), FBq,Tq(x),

FSp,Tq(x), FAp,Tq(αx), FBq,Sp((2 − α)x)}.

Theorem 3.1 is a wide generalization of the above result.

Now keeping only the first three factors in R.H.S. of the contractive

condition (ii) of Theorem 3.1 and taking B = A, we get the following.

Corollary 3.4. Three self-maps A,S and T of a Menger space

(X,F, t), where t(a, b) = min{a, b}, satisfying the conditions:

(1) for some x0 ∈ X an orbit O(AT−1, AS−1, Ax0) is complete,

(2) A(X) ⊂ S(X) ∩ T (X),
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(3) one of A and S is continuous,

(4) (A,S) is semi-compatible and (A,T ) is weak-compatible,

(5) for some x0 ∈ X, there is a k ∈ (0, 1) such that for all p ∈

O(AT−1 , AS−1, Ax0) ∪ O(T−1A,S1A, x0), all q ∈ X and all

x > 0,

FAp,Aq(kx) ≥ min{FAp,Sp(x), FAq,Tq(x), FSp,Tq(x)}.

Then A,S and T have a unique common fixed point.

Remark 3.2. Corollary 3.4 is a generalization of the theorem

of Dedeic and Sarapa [4] in the sense that commutativity of both

pairs (A,S) and (A,T ) is replaced by a weaker condition of semi-

compatibility of one pair and weak-compatibility of the other pair.

Further, we need the continuity of one of the maps A or S and not of

both A and T as found there.

If we take S = T = I in the above corollary, then we get the

following.

Corollary 3.5. Let A be a self-map on a Menger space (X,F, t)

with t-norm defined by t(a, b) = min{a, b} satisfying

(1) for some x0 ∈ X the orbit O(A, x0) is complete,

(2) for all p ∈ O(A, x0) and all q ∈ X, there is a k ∈ (0, 1) such

that

FAp,Aq(kx) ≥ min{FAp,p(x), FAp,q(x), Fp,q(x)}.

Then A has a unique fixed point.

Remark 3.3. The above result improves the result of Sehgal and

Bharucha Reid [10] in the sense that the domain of p in the contractive

condition is reduced to the closure of an orbit and also the domain of

completeness is an orbit only, not the whole space.



SEMI–COMPATIBILITY AND FIXED POINT THEOREM 15

If we keep only one last factor in R.H.S. of the contractive condition

in the above corollary, then we get the following.

Corollary 3.6. Let A be a self-map of a Menger space with t-

norm defined by t(a, b) = min{a, b} for all a, b ∈ (0, 1], satisfying (1)

in Corollary 3.5 and for all p ∈ O(A, x0) and all q ∈ X there is a

k ∈ (0, 1) such that

FAp,Aq(kx) ≥ Fp,q(x)

for all x > 0. Then A has a unique fixed point.

Remark 3.4. This result improves a Menger version of Banach

Contraction Theorem as given in Hicks [5, Theorem 1] in the sense

that the domain of p in the contractive condition is the closure of the

orbit O(A, x0), not the whole space X.

If we take S = T = I in Corollary 3.2 and keeping only one last

factor in the R.H.S. of the contractive condition, then we get the

following.

Corollary 3.7. Let A and B be self-maps on a Menger space

(X,F, t) with t-norm defined by t(a, b) = min{a, b} for all a, b ∈ [0, 1],

satisfying

(1) for some x0 ∈ X the orbit O(A,B, x0) is complete,

(2) for all p ∈ O(A,B, x0) and all q ∈ X there is a k ∈ (0, 1) such

that

FAp,Bq(kx) ≥ Fp,q(x).

Then A and B have a unique common fixed point.

Theorem 3.8. Let {Tn} be a sequence of self-maps on a complete

Mneger space (X,F, t) with t-norm defined by t(a, b) = min{a, b} for

all a, b ∈ X and there are constants ki,i+1 ∈ (0, 1) such that

F
T

mi

i
p,T

mi+1

i+1
q
(ki,i+1x) ≥ Fp,q(x)
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for all x > 0 and all p, q ∈ X. Then the self-maps Tn have a unique

common fixed point in X.

Proof. By Corollary 3.7, each pair (Tmi

i , T
mi+1

i+1
) has a unique com-

mon fixed point, say, u, for all i. Hence u = Tmi

i u = T
mi+1

i+1
u. Now

Tmi

i (Tiu) = Ti(T
mi

i u) = Tiu, i.e., Tiu is a fixed point of Tmi

i . Simi-

larly, Ti+1u is a fixed point of T
mi+1

i+1
. Put p = Tiu and q = u in the

above condition, we get

F
T

mi

i
Tiu,T

mi+1

i+1
u
(ki,i+1x) ≥ FTiu,u(x)

implies

FTiu,u(ki,i+1x) ≥ FTiu,u(x),

which gives Tiu = u. Similarly, we can show that Ti+1u = u. So

Tiu = Ti+1u = u. Therefore, u is a common fixed point of Ti and

Ti+1. If v is another common fixed point of Ti and Ti+1, then v is

also a common fixed point of Tmi

i and T
mi+1

i+1
, which is unique. Hence

u = v. Thus any two consecutive maps of the sequence {Tn} have a

unique common fixed point. Let u1 be the common fixed point of the

pair (T1, T2) and u2 the common fixed point of the pair (T2, T3). Put

p = u1 and q = u2 in the contractive condition. We get

Fu1,u2
(k1,2x) ≥ Fu1,u2

(x)

for all x > 0. This implies u1 = u2. Hence each consecutive pair of

{Tn} has the same unique common fixed point, which must be the

unique common fixed point of {Tn}. �

Remark 3.5. Theorem 3.8, which is a corollary of Theorem 3.1, is

a generalization of Theorems 1 and 2 of Dedeic and Sarapa [3] since

the constants ki,i+1 are distinct for different i and the powers mi of

maps Ti are distinct for different i. Also the condition of continuity

of maps is not required here.
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