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1. Introduction

A class of algebras KP,Q
n,Γ , constructed by Horton in [2], includes

the multiparameter quantized coordinate rings of symplectic and Eu-

clidean 2n-spaces, the graded quantized Weyl algebra, the quantized

Heisenberg space, and is similar to a class of iterated skew polyno-

mial rings constructed by Gómez-Torrecillas and Kaoutit in [1]. The

prime and primitive spectra for the multiparameter quantized coordi-

nate rings of symplectic and Euclidean 2n-spaces were established by

Gómez-Torrecillas and Kaoutit in [1], by Horton in [2] and by the au-

thor in [3]. Moreover the author constructed a class of Poisson algebras

AP,Q
n,Γ in [5], whose quantization is the algebra KP,Q

n,Γ . Here we consider

an additive group K acting by Poisson derivations on AP,Q
n,Γ which gives

a classification of K-prime Poisson ideals of AP,Q
n,Γ and we see that the

additive group K is considered as a Poisson version of a multiplicative

group acting by automorphisms on KP,Q
n,Γ .

Assume throughout the paper that k denotes an algebraically closed

field of characteristic zero and that all vector spaces are over k. A

Poisson algebra A is always a commutative k-algebra with k-bilinear

map {·, ·}, called a Poisson bracket, such that (A, {·, ·}) is a Lie algebra
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and {·, ·} satisfies the Leibniz rule, that is,

{ab, c} = a{b, c}+ b{a, c}

for all a, b, c ∈ A. Hence, for any element a ∈ A, the map

ha : A −→ A, ha(b) = {a, b}

is a derivation in A which is called a Hamiltonian defined by a.

2. Poisson polynomial ring

Let A be a Poisson algebra. A derivation δ on A is said to be a

Poisson derivation if δ({a, b}) = {δ(a), b}+ {a, δ(b)} for all a, b ∈ A.

Theorem 2.1. For a Poisson algebra A with Poisson bracket {·, ·}A

and k-linear maps α, δ from A into itself, the polynomial ring A[x] is a

Poisson algebra with Poisson bracket

(2.1) {a, x} = α(a)x + δ(a)

for all a ∈ A if and only if α is a Poisson derivation and δ is a derivation

such that

(2.2) δ({a, b}A) − {δ(a), b}A − {a, δ(b)}A = δ(a)α(b)− α(a)δ(b)

for all a, b ∈ A. In this case, we denote the Poisson algebra A[x] by

A[x; α, δ]p and if δ = 0 then we simply write A[x; α]p for A[x; α, 0]p.

Proof. [4, 1.1 Theorem]

Proposition 2.2. Let A be a Poisson algebra. For Poisson deriva-

tions α and β on A, c ∈ k and u ∈ A such that

αβ = βα, {a, u} = (α + β)(a)u

for all a ∈ A, the polynomial ring A[y, x] has the following Poisson

bracket

(2.3) {a, y} = α(a)y, {a, x} = β(a)x, {y, x} = cyx + u

for all a ∈ A. The Poisson algebra A[y, x] with Poisson bracket (2.3)

can be presented by A[y; α]p[x; β ′, δ]p, where β ′ is the Poisson derivation
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on A[y; α]p such that β ′|A = β and β ′(y) = cy, and δ is the derivation

on A[y; α]p such that δ|A = 0, δ(y) = u.

We often denote by (A; α, β, c, u) the Poisson algebra A[y, x] with

Poisson bracket (2.3).

Proof. By Theorem 2.1, there exists the Poisson algebra A[y; α]p

with Poisson bracket {a, y} = α(a)y for all a ∈ A and the derivation

β is extended to a derivation, denoted by β ′, to A[y; α]p by setting

β ′(y) = cy. Note that the derivation δ = u d
dy

on A[y; α]p satisfies

δ(y) = u and δ(a) = 0 for all a ∈ A. Let us prove that, for all

f, g ∈ A[y; α]p,

(2.4)
β ′({f, g}) = {β ′(f), g} + {f, β ′(g)}

δ({f, g}) = {δ(f), g}+ {f, δ(g)}+ δ(f)β ′(g) − β ′(f)δ(g).

If f, g ∈ A then the formulas in (2.4) hold trivially since β ′ is a

Poisson derivation on A. Hence it is enough to prove (2.4) for the case

f = a ∈ A and g = y. Now we have that

β ′({a, y}) = β ′(α(a)y) = α(a)β ′(y) + β ′(α(a))y

= cα(a)y + α(β(a))y = {β ′(a), y}+ {a, β ′(y)}

δ({a, y}) = δ(α(a)y) = α(a)u = {a, u} − β(a)u

= {δ(a), y}+ {a, δ(y)}+ δ(a)β ′(y) − β ′(a)δ(y),

as claimed.

Therefore β ′ is a Poisson derivation on A[y; α]p such that the pair

(β ′, δ) satisfies (2.2), and thus, by Theorem 2.1, there exists the Poisson

algebra A[y, x] = A[y; α]p[x; β ′, δ]p with the Poisson bracket (2.3).
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3. Poisson algebra An = AP,Q
n,Γ

Definition 3.1. ([5, Theorem 1.2]) Let Γ = (γij) be a skew-symmetric

n×n-matrix with entries in k, that is, γij = −γji for all i, j = 1, · · · , n.

Let P = (p1, p2, · · · , pn) and Q = (q1, q2, · · · , qn) be elements of kn

such that pi 6= qi for each i = 1, · · · , n. Then the Poisson algebra

k[y1, x1, · · · , yn, xn] with Poisson bracket:

(3.1)

{yi, yj} = γijyiyj (all i, j)
{xi, yj} = (pj − γij)yjxi (i < j)
{yi, xj} = −(qi + γij)yixj (i < j)
{xi, xj} = (qi − pj + γij)xixj (i < j)

{xi, yi} = qiyixi +
∑i−1

k=1(qk − pk)ykxk (all i)

is called the multi-parameter symplectic Poisson algebra and denoted

by AP,Q
n,Γ or by An unless any confusion arises.

Remark 3.2. Set

A0 = k, Aj = k[y1, x1, · · · , yj, xj] ⊆ AP,Q
n,Γ

for each j = 0, 1, · · · , n. Then each Aj is a Poisson subalgebra of AP,Q
n,Γ

and Aj = Aj−1[yj, xj] for each j, and thus, by Theorem 2.1, there

exist Poisson derivations αj, βj and a derivation δj such that Aj can be

presented by

Aj = Aj−1[yj; αj]p[xj; βj, δj]p,

where
(3.2)

αj(yi) = γijyi, αj(xi) = (pj − γij)xi (i < j)
βj(yi) = −(qi + γij)yi, βj(xi) = (qi − pj + γij)xi (i < j)
δj(yi) = 0, δj(xi) = 0 (i < j)

βj(yj) = −qjyj δj(yj) = −
∑j−1

k=1(qk − pk)ykxk.

Set

Ω0 = 0, Ωj =

j∑

k=1

(qk − pk)ykxk
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for all j = 1, · · · , n − 1, and note that

αjβj = βjαj, {a, Ωj−1} = (αj + βj)(a)Ωj−1

for all a ∈ Aj−1. Hence we have Aj = (Aj−1; αj, βj,−qj,−Ωj−1) by

Proposition 2.2 and so the Poisson algebra An = AP,Q
n,Γ has the chain of

Poisson subalgebras

A0 = k ⊆ A1 = (A0; α1, β1,−q1, 0) ⊆ · · · ⊆ An = (An−1; αn, βn,−qn,−Ωn−1).

Lemma 3.3. As in Remark 3.2, set

Ωi =
i∑

k=1

(qk − pk)ykxk ∈ An = AP,Q
n,Γ

for each i = 1, · · · , n and Ω0 = 0.

(a) For any Ωj ,

{yi, Ωj} = −qiyiΩj, {xi, Ωj} = qixiΩj , (i ≤ j)
{yi, Ωj} = −piyiΩj , {xi, Ωj} = pixiΩj, (i > j)
{Ωi, Ωj} = 0, (all i, j)

(b) We have the following relations:

(3.3) Ωi−1 = {xi, yi} − qiyixi, Ωi = {xi, yi} − piyixi

Hence, yi and xi are Poisson normal modulo 〈Ωi〉 and 〈Ωi−1〉.

Proof. The formulas of (a) follow from (3.1) and the formulas of

(b) follow immediately since Ωi = (qi − pi)yixi + Ωi−1 and {xi, yi} =

qiyixi + Ωi−1.

Definition 3.4. ([3, Definition 1.4]) Let Pn = {Ω1, y1, x1, · · · , Ωn,

yn, xn} ⊆ An. A subset T of Pn is said to be admissible if it satisfies

the conditions:

(a) yi or xi ∈ T ⇔ Ωi and Ωi−1 ∈ T (2 ≤ i ≤ n)

(b) y1 or x1 ∈ T ⇔ Ω1 ∈ T .
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Proposition 3.5. (a) For every admissible set T , the ideal 〈T 〉 is a

prime Poisson ideal of An.

(b) For every prime Poisson ideal P of An, P ∩ Pn is an admissible

set.

Proof. [5, 1.5 and 1.6]

4. K-actions on AP,Q
n,Γ

In this section, we will show that every K-prime Poisson ideal of

AP,Q
n,Γ is generated by an admissible set. The statements and proofs of

this section are modified from those of [2, §3].

Definition 4.1. Let

K = {(h1, h2, · · · ,h2n−1, h2n) ∈ k2n |

h2i−1 + h2i = h2j−1 + h2j for all i, j = 1, · · · , n}.

The additive group K acts on An as follows:

(h1, h2, · · · , h2n−1, h2n)(f) =
∑

i

(h2i−1yi

∂f

∂yi

+ h2ixi

∂f

∂xi

)

for all elements f ∈ An. Note that each element of K acts on An by a

Poisson derivation.

Let A be a Poisson algebra and let an additive group H act on A

by Poisson derivations. A proper Poisson ideal Q of A is said to be

H-prime Poisson ideal if Q is H-stable such that whenever I, J are

H-stable Poisson ideals of A with IJ ⊆ Q, either I ⊆ Q or J ⊆ Q.

A Poisson algebra A is said to be H-simple if 0 and A are the only

H-stable Poisson ideals of A.

Lemma 4.2. Let A be a Poisson algebra and let α be a Poisson

derivation on A. Suppose that H acts on A[x±1; α]p so that x is an

H-eigenvector and A is both H-stable and H-simple, where H acts on

A by restriction. If H contains a Poisson derivation g such that g|A = α

and g(x) = cx for some 0 6= c ∈ k then A[x±1; α]p is H-simple.
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Proof. Let I be a nonzero proper H-Poisson ideal of A[x±1; α]p. Then

choose 0 6= a ∈ I , of shortest length with respect to x, say a = akx
k +

· · · + amxm for some k ≤ m, where ai ∈ A for each i and ak, am 6=

0. Since x is unit and A ∩ I = 0, we may assume that k = 0 and

a = a0 + · · · + amxm, where m > 0 and a0, am 6= 0. Set J = {r ∈

A | r + r1x + · · · + rmxm ∈ I for some r1, · · · , rm ∈ A} and note that

J is a Poisson ideal of A. Given any h ∈ H, let λh be the h-eigenvalue

of x. Since I is H-stable, h(r + r1x + · · · + rmxm) = h(r) + (h(r1) +

λhr1)x + · · ·+(h(rm)+mλhrm)xm ∈ I , and so h(r) ∈ J . Hence J is an

H-Poisson ideal of A, and thus either J = 0 or J = A; by our choice of

a, 1 ∈ J . Thus we may assume that a = 1+a1x+ · · · , amxm. Since I is

H-stable, g(a) = (g(a1)+ca1)x+· · ·+(g(am)+mcam)xm ∈ I , which has

the length less than a, hence g(a) = 0 and g(ai)+icai = α(ai)+icai = 0

for each i = 1, · · · , m. Now, {a, x} = α(a1)x
2 + · · · + α(am)xm+1 is an

element of I with the length less than a. Hence α(ai) = 0 and thus

ai = 0 for all i = 1, · · · , m. It follows that a = 1 ∈ I , a contradiction.

As a result, A[x±1; α]p is H-simple.

Lemma 4.3. Let B = A[y; α]p[x; β]p, where A is a prime Poisson

algebra and both α and β are Poisson derivations, such that β(A) ⊆ A

and β(y) = cy for some c ∈ k, and that H is a group of Poisson

derivations on B such that A is H-stable and y, x are H-eigenvectors. If

there exist f, g ∈ H such that f |A = α with f(y) = ay and g|A[y;α]p = β

with g(x) = bx for some a, b ∈ k×, and if A is H-simple, then

(a) B[y−1][x−1], B/〈y, x〉, (B/〈y〉)[x−1], and (B/〈x〉)[y−1] are H-simple.

(b) B has only four H-prime Poisson ideals 0, 〈y〉, 〈x〉, 〈y, x〉.

Proof. (a) Note that

B[y−1] = A[y±1; α]p[x; β]p, B[y−1][x−1] = A[y±1; α]p[x
±1; β]p.

By Lemma 4.2, A[y±1; α]p is H-simple. Now apply Lemma 4.2 twice to

obtain that B[y−1][x−1] = A[y±1; α]p[x
±1; β]p is H-simple.
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Since B/〈y, x〉 ∼=H A, it follows that B/〈y, x〉 is H-simple. Next,

the Poisson algebra (B/〈y〉)[x−1] ∼=H A[x±1; β]p is H-simple by Lemma

4.2. Analogously, (B/〈x〉)[y−1] ∼=H A[y±1; α]p is H-simple.

(b) Clearly, 0, 〈y〉, 〈x〉, 〈y, x〉 are all H-prime Poisson ideals. Sup-

pose that P is a nonzero H-prime Poisson ideal of B. The extended

ideal P e = PB[y−1][x−1] contains the multiplicative identity because

B[y−1][x−1] is H-simple. Thus, yixj ∈ P for some i, j and thus P con-

tains y or x since 〈y〉 and 〈x〉 are both H-stable Poisson ideals of B.

If x ∈ P then P/〈x〉 is an H-prime Poisson ideal of B/〈x〉, and thus

P = 〈x〉 or P = 〈x, y〉 since (B/〈x〉)[y−1] is H-simple. Analogously, if

P contains y then P = 〈y〉 or P = 〈x, y〉. As a result, B has only four

H-prime Poisson ideals 0, 〈y〉, 〈x〉, 〈y, x〉.

Lemma 4.4. Let B = (A; α, β, c, u) = A[y; α]p[x; β ′, δ]p be the Pois-

son algebra given in Proposition 2.2. Assume, in addition, that A is

a prime Poisson algebra, α(u) = du, β(u) = −du for some d ∈ k

with c + d 6= 0 and 0 6= δ(y) = u ∈ A is Poisson normal in B. Set

z = (c + d)yx + δ(y). Let H be a group of Poisson derivations on B

such that A is H-stable and y, x and z are H-eigenvectors. Suppose

that there exist f, g ∈ H such that f |A = α with f(y) = ay for some

a ∈ k× and g|A[y;α]p = β ′ with g(y−1z) = by−1z for some b ∈ k×. If A

is H-simple, then

(a) δ(y) is invertible in B.

(b) no proper H-stable Poisson ideal of B contains a power of y.

(c) B[y−1][z−1], B[z−1] and B/〈z〉 are H-simple.

(d) the only H-prime Poisson ideals of B are 0 and 〈z〉.

Proof. (a) Since δ(y) = {y, x} − cyx is H-eigenvector and Poisson

normal, 〈δ(y)〉 is an H-stable Poisson ideal of B. Thus I = 〈δ(y)〉 ∩ A

is a nonzero H-stable Poisson ideal of A, and hence 1 ∈ I since A

is H-simple. In particular, 1 ∈ 〈δ(y)〉 and so δ(y)B = 〈δ(y)〉 = B.

Consequently, δ(y) is invertible in B.
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(b) Suppose that P is a proper H-Poisson ideal of B such that yj ∈ P

for some j > 0. Whenever yj ∈ P for some j > 0, we have that

jyj−1δ(y) = δ(yj) = {yj, x} − β ′(yj)x = {yj, x} − jcyjx ∈ P,

and hence yj−1 ∈ P since δ(y) is invertible in B by (a). The repeated

applications of the above argument guarantee that y ∈ P . Therefore

δ(y) = {y, x} − cyx ∈ P , and thus no proper H-Poisson ideal contains

a power of y since δ(y) is invertible in B by (a).

(c) Note that B[y−1] = A[y±1; α]p[y
−1z; β ′]p and

B[y−1][z−1] = A[y±1; α]p[(y
−1z)±1; β ′]p, g|A[y±1;α]p = β ′.

Applying Lemma 4.2 yields that both A[y±1; α]p and A[y±1; α]p[(y
−1z)±1; β ′]p

are H-simple, so B[y−1][z−1] is H-simple.

Let P be an H-prime Poisson ideal of B[z−1]. Then P is induced

from an H-prime Poisson ideal P̌ of B disjoint from {zj | j = 0, 1, · · · }.

By (b), P̌ contains no yj. Suppose that P̌ contains some yizj. Since z

and y are Poisson normal and H-eigenvectors and the hypothesis, we

have that yi ∈ P̌ or zj ∈ P̌ , a contradiction. Thus P̌ is disjoint from

the multiplicative set generated by y and z. Hence the extension P̌ e to

B[y−1][z−1] is an H-prime Poisson ideal. Since B[y−1][z−1] is H-simple,

P̌ e = 0, and so P̌ = 0, so P = 0. Thus B[z−1] contains no nonzero

H-prime Poisson ideals.

If I is a proper H-Poisson ideal of B[z−1] then I is contained in a

prime Poisson ideal P of B[z−1]. Set Q = (P : H) the largest H-stable

Poisson ideal contained in P . If I and J are H-stable Poisson ideals
such that IJ ⊆ Q then either I ⊆ P or J ⊆ P , and thus either I ⊆ Q

or J ⊆ Q. It follows that Q is an H-prime Poisson ideal such that

I ⊆ Q ⊆ P . Since B[z−1] does not have a nonzero H-prime Poisson

ideal, we have that I = Q = 0. Hence, B[z−1] is H-simple.
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Note that 〈z〉 is a Poisson ideal of B since z is Poisson normal, and

zB[y−1] is also a Poisson ideal of B[y−1]. Observe that

(B/〈z〉)[y−1] ∼=H B[y−1]/(zB[y−1])

= A[y±1; α]p[y
−1z; β ′]p/(zA[y±1; α]p[y

−1z; β ′]p)

∼=H A[y±1; α]p.

Thus (B/〈z〉)[y−1] is H-simple by Lemma 4.2. Denote by b the canon-

ical homomorphic image of b ∈ B in B/〈z〉. Since yx = −(c + d)−1δ(y)

and δ(y) is invertible in A by (a), y is invertible in B/〈z〉, and thus

B/〈z〉 = (B/〈z〉)[y−1] is H-simple.

(d) Clearly 0 is an H-prime Poisson ideal of B since B is a prime

Poisson algebra. Further, 〈z〉 is H-stable and prime Poisson since z is

an H-eigenvector and Poisson normal in B. Now, let P be an H-prime

Poisson ideal of B. If P contains no zi then P extends to an H-prime

Poisson ideal P̌ of B[z−1]. Since B[z−1] is H-simple by (c), P̌ = 0, and

so P = 0. Assume that P contains some zi. Then z ∈ P since 〈z〉 is an

H-stable Poisson ideal and P is an H-prime Poisson ideal. Thus 0 and

〈z〉 are the only H-prime Poisson ideals of B since B/〈z〉 is H-simple

by (c).

Definition 4.5. Given an admissible set T of An, let NT be the

subset of Pn defined by

(a) y1 ∈ NT if and only if y1 /∈ T

(b) x1 ∈ NT if and only if x1 /∈ T

(c) for i > 1, Ωi ∈ NT if and only if Ωi−1 /∈ T and Ωi /∈ T

(d) for i > 1, yi ∈ NT if and only if Ωi−1 ∈ T and yi /∈ T

(e) for i > 1, xi ∈ NT if and only if Ωi−1 ∈ T and xi /∈ T

Theorem 4.6. For an admissible set T , let ET be the multiplicative

set generated by NT .

(a) ET ∩ 〈T 〉 = φ.
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(b) AT
n = (An/〈T 〉)[E−1

T ] is H-simple.

Proof. (a) It follows immediately from Proposition 3.5.

(b) We proceed by induction on n. Let n = 1 and we will apply

Lemma 4.3 (a). By Remark 3.2, A1 = (k, 0, 0,−q1, 0) = k[y1; 0]p[x1, β1]p,

where β1(y1) = −q1y1, and consider f = (1, 1), g = (−q1, 1) ∈ K. Then

g acts as β1 on A1 and g(x) = x. There are four possible cases for T :

φ, {y1, Ω1}, {x1, Ω1}, {y1, x1, Ω1}.

Hence AT
1 is one of the forms A1[y

−1][x−1], (A1/〈y1〉)[x
−1
1 ], (A1/〈x1〉)[y

−1
1 ],

A1/〈y1, x1〉. Applying Lemma 4.3 (a), AT
1 is H-simple.

Suppose that n > 1 and AS
n−1 is K-simple for any admissible set

S ⊆ Pn−1. Note that

An = An−1[yn; αn]p[xn; βn, δn]p = (An−1; αn, βn,−qn,−Ωn−1)

αn(−Ωn−1) = pn(−Ωn−1), βn(−Ωn−1) = −pn(−Ωn−1)

by Remark 3.2 and Lemma 3.3. Given an admissible set T of An, set

T ′ = T ∩ Pn−1 and let I be the ideal of An−1 generated by T ′. Then,

since I is {αn, βn, δn}-stable, we have the following K-equivalence:

An/IAn
∼=K (An−1/I)[yn; αn]p[xn; βn, δn]p,

where δn = 0 if Ωn−1 ∈ T ′, and thus we have

(An/IAn)[E
−1
T ′ ] ∼=K (An−1/I)[E−1

T ′ ][yn; αn]p[xn; βn, δn]p.

Set A = (An−1/I)[E−1
T ′ ] and S = T\T ′. Then 〈T 〉 = IAn + 〈S〉 and

An/〈T 〉 ∼=K (An/IAn)/(〈T 〉/IAn)

An/〈T 〉[E−1
T ′ ] ∼=K A[yn; αn]p[xn; βn, δn]p/〈S〉.
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Let E be the multiplicative set generated by NT\(NT ′ ∩ Pn−1). Then

An/〈T 〉[E−1
T ] = An/〈T 〉[E−1

T ′ ][E−1]

∼=K (A[yn; αn]p[xn; βn, δn]p/〈S〉)[E
−1].

In order to apply Lemma 4.3 and Lemma 4.4, we will define the

necessary elements of K. Set

f = (γ1n, pn − γ1n, γ2n, pn − γ2n, · · · , γn−1,n, pn − γn−1,n, 1, pn − 1)

g = (−q1 − γ1n, q1 − pn + γ1n,−q2 − γ2n, q2 − pn + γ2n, · · · ,

− qn−1 − γn−1,n, qn−1 − pn + γn−1,n,−qn, qn − pn).

Then f, g ∈ K and f |An−1
= αn, f(yn) = yn, f(xn) = (pn − 1)xn and

g|An−1[yn;αn]p = βn, g(xn) = (qn − pn)xn. Note that (−qn + pn)ynxn −

Ωn−1 = −Ωn and g(−y−1
n Ωn) = (qn − pn)(−y−1

n Ωn). As defined, 1 and

qn − pn are nonzero.

There are five possible cases for S:

φ, {Ωn}, {yn, Ωn}, {xn, Ωn}, {yn, xn, Ωn}.

If S = φ then 〈S〉 = 0, and if Ωn−1 ∈ T ′, then E is generated by yn and

xn, so that

AT
n
∼=K (A[yn; αn]p[xn; βn, δn]p/〈S〉)[E

−1]

= (A[yn; αn]p[xn; βn]p)[y
−1
n ][x−1

n ]

= A[y±1
n ; αn]p[x

±1
n ; βn]p.

since δn = 0. Applying Lemma 4.3 yields that AT
n is K-simple. If

Ωn−1 /∈ T ′ then E is generated by Ωn and AT
n
∼=K (A[yn; αn]p[xn; βn, δn]p)[Ω

−1
n ]

is K-simple by Lemma 4.4.

If S = {Ωn} then Ωn−1 /∈ T ′ and E = {1}, and so

AT
n
∼=K (A[yn; αn]p[xn; βn, δn]p)/〈Ωn〉
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is K-simple by Lemma 4.4.

If S = {yn, Ωn} then 〈S〉 = 〈yn〉 and E is generated by xn. Further

δn = 0 since Ωn−1 ∈ T ′ and

AT
n
∼=K (A[yn; αn]p[xn; βn, δn]p/〈S〉)[x

−1
n ]

= (A[yn; αn]p[xn; βn]p/〈yn〉)[x
−1
n ]

is K-simple by Lemma 4.3.

If S = {xn, Ωn} then 〈S〉 = 〈xn〉 and E is generated by yn. Moreover

δn = 0 and

AT
n
∼=K (A[yn; αn]p[xn; βn, δn]p/〈S〉)[y

−1
n ]

= (A[yn; αn]p[xn; βn]p/〈xn〉)[y
−1
n ]

is K-simple by Lemma 4.3.

Lastly, if S = {yn, xn, Ωn} then Ωn−1 ∈ T ′ and E = {1}, and so

AT
n
∼=K (A[yn; αn]p[xn; βn]p)/〈yn, xn〉

is K-simple by Lemma 4.3. Therefore we conclude that AT
n is K-simple

for every admissible set T .

Lemma 4.7. Let P be a K-prime Poisson ideal of An. Then T =

P ∩ Pn is an admissible set.

Proof. For convenience, set Ω0 = 0. Suppose that yi ∈ T , i =

1, · · · , n. Then Ωi−1 = {xi, yi} − qiyixi ∈ P and Ωi = (qi − pi)yixi +

Ωi−1 ∈ P by Lemma 3.3. It follows that if yi ∈ T then Ωi, Ωi−1 ∈ T .

Similarly, if xi ∈ T , i = 1, · · · , n then Ωi, Ωi−1 ∈ T . Conversely, sup-

pose that Ωi, Ωi−1 ∈ T , i = 1, · · · , n. Then (qi−pi)yixi = Ωi−Ωi−1 ∈ P .

Since yi and xi are both K-eigenvectors and Poisson normal modulo

〈Ωi−1〉, we have that 〈yi, Ωi−1〉 and 〈xi, Ωi−1〉 are K-stable Poisson ideals

and 〈yi, Ωi−1〉〈xi, Ωi−1〉 ⊆ P, and hence we have yi ∈ P or xi ∈ P .

Therefore, if Ωi, Ωi−1 ∈ T , i = 1, · · · , n then yi ∈ T or xi ∈ T . It

follows that T is an admissible set of An.
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Theorem 4.8. Every K-prime Poisson ideal of An is generated by

an admissible set.

Proof. Let P be a K-prime Poisson ideal of An and let T = P ∩Pn.

Then T is an admissible set by Lemma 4.7 and P/〈T 〉 is a K-prime

Poisson ideal of An/〈T 〉. By definition, NT ∩T = φ and so NT ∩P = φ,

and hence NT ∩P/〈T 〉 = φ, where each element of NT is Poisson normal

in An/〈T 〉. Recalling that ET is the multiplicative set generated by

NT , we have that ET ∩P/〈T 〉 = φ. Hence (P/〈T 〉)[ET
−1

] is a K-prime

Poisson ideal of AT
n , and so (P/〈T 〉)[ET

−1
] = 0 since AT

n is K-simple

by Theorem 4.6. Therefore, P/〈T 〉 = 0, so P = 〈T 〉.
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