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ON THE STOCHASTIC PROCESS X(t, ω) ∈ L2
s.a.p.

Jong Mi Choo*

Abstract. We find some properties of a stochastic process X(t, ω) ∈

L2
s.a.p.

which is of bounded variation.

1. Introduction

Throughout this paper, (Ω,F , P ) is the underlying probability

space and , without otherwise mentioned,X(t, ω), t ∈ R, is a complex

valued stochastic process of the second order,where ω is an element

of Ω, that is,

E|X(t, ω)|2 = ||X(t, ω)||2 < ∞ for every t.

Suppose that X(t, ω) is measurable on R×Ω and also suppose that

∫ b

a

||X(t, ω)||2 dt < ∞, for every finite a < b.

In this case, X(t, ω) is of L2(a, b) as a function of t almost surely.

Definition 1.1. X(t, ω) ∈ L2
s.a.p. if and only if the set

S2(ǫ,X) ≡ {τ ; sup
u∈R

∫ u+1

u

||X(t + τ, ω) − X(t, ω)||2 dt < ǫ}

is relatively dense for every ǫ > 0.
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Proposition 1.1. Let X(t, ω) ∈ L2
s.a.p. . For

α(λ) = l.i.m.T→∞
1

T

∫ T

0

X(t, ω)e−iλtdt,

there exists Λ = {λn} ⊂ R such that α(λ) 6= 0 for λ ∈ Λ and α(λ) = 0

for λ /∈ Λ. Let α(λ) ≡ αn, n = 1, 2, ... And then Parseval relation

lim
T→∞

1

T

∫ T

0

||X(t, ω)||2 dt =
∞∑

n=1

||αn||
2

holds.(We call the numbers λ1, λ2, ..., Fourier exponents and the num-

bers α1, α2, ..., Fourier coefficients of X(t, ω) ∈ L2
s.a.p. )

Proof. We know[1] there exist Λ = {λn} and {λn} ⊂ R
+ such that∑∞

n=1 γn < ∞, φ(u) =
∑∞

n=1 γneiλnu where

φ(u) = lim
T→∞

1

T

∫ γ+T

γ

< X(t + u),X(t) > dt.

(Convergence of the above limit is uniform for γ and u.)

Therefore,

lim
T→∞

1

T

∫ T

0

φ(u)e−iλudu = lim
T→∞

1

T

∫ T

0

∞∑
n=1

γnei(λn−λ)udu

=
∞∑

n=1

γn( lim
T→∞

1

T

∫ T

0

ei(λn−λ)udu)

The above value is γn if λ = λn ∈ Λ, n = 1, 2, ... and 0 if λ ∈ Λc.
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Otherwise,

lim
T→∞

1

T

∫ T

0

φ(u)e−iλudu

= lim
T→∞

1

T

∫ T

0

e−iλu{ lim
S→∞

1

S

∫ S

0

< X(u + t),X(t) > dt}du

= lim
T→∞

lim
S→∞

1

TS

∫ S

0

∫ T

0

e−iλu < X(u + t),X(t) > dtdu

= lim
S→∞

< l.i.m.T→∞
1

T

∫ T−t

−t

e−iλuX(u)du,
1

S

∫ S

0

e−iλtX(t)dt >

= lim
S→∞

< α(λ),
1

S

∫ S

0

e−iλtX(t)dt >

=< α(λ), l.i.m.S→∞
1

S

∫ S

0

e−iλtX(t)dt >

=< α(λ), α(λ) >

= ||α(λ)||2.

Hence

||α(λn)||2 = ||αn||
2 = γn, n = 1, 2, ...

||α(λ)||2 = 0, λ ∈ Λc.

Therefore, we have

φ(0) = lim
T→∞

1

T

∫ T

0

||X(t)||2 dt

=
∞∑

n=1

γn =
∞∑

n=1

||α(λn)||2 =
∞∑

n=1

||αn||
2,

as desired. �

We, throughout this paper, make the following assumption:

There exists some δ > 0 such that |λm −λn| > δ, for m 6= n, where

λn, n = 1, 2, ..., are Fourier exponents.



200 J. CHOO

Without otherwise mentioned,X(t, ω) ∈ L2
s.a.p. means X(t, ω) ∈

L2
s.a.p. which admits the above condition.

Definition 1.2. Let X(t, ω), t ∈ R be of L2(a, b). If

sup
D

n∑
j=1

||X(tj , ω) − X(tj−1 , ω)|| = V < ∞,

where sup is taken for all divisions D; a ≤ t0 < t1 < ... < tn ≤ b,

for every finite [a, b] ⊂ R, then we say that X(t, ω) is of bounded

variation and write X(t, ω) ∈ BV .

In this paper, we find some propositions of a stochastic process

X(t, ω) ∈ L2
s.a.p. which is of bounded variation.

2. Bounded variation

Proposition 2.1. If X(t, ω) ∈ BV then

lim
T→∞

1

T

∫ T

0

||X(t + h, ω) − X(t, ω)||dt ≤ c|h|,

for some constant c.

Proof. In the case of h > 0,

lim
T→∞

1

T

∫ T

0

||X(t + h, ω) − X(t, ω)||dt

= lim
T→∞

1

T

∫ T

0

dt

∫ t+h

t

d||X(u, ω)||

= lim
T→∞

1

T
[

∫ h

0

d||X(u, ω)||

∫ u

0

dt

+

∫ T

h

d||X(u, ω)||

∫ u

u−h

dt +

∫ T+h

T

d||X(u, ω)||

∫ T

u−h

dt]

≤ lim
T→∞

1

T
h3c1T

≤ c2h,
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for some constants c1, c2.

Similarly, in the case of h > 0, we can also have some constant c3

such that

lim
T→∞

1

T

∫ T

0

||X(t + h, ω) − X(t, ω)||dt ≤ c3|h|,

as desired. �

Proposition 2.2. If X(t, ω) ∈ L2
s.a.p. and X(t, ω) ∈ BV , then

||αn(ω)|| ≤ c
|λn| for some constant c.

Proof. For each T ,

∫ T

0

X(t, ω)e−iλntdt = [
e−iλntX(t, ω)

−iλn

]T0 +
1

iλn

∫ T

0

e−iλntdX(t, ω).

Therefore,

E|αn(ω)|2 = lim
T→∞

1

T 2
E|

∫ T

0

X(t, ω)e−iλntdt|2

≤ lim
T→∞

[E|
e−iλnT X(T, ω) − X(0, ω)

λnT
|2]

+ lim
T→∞

[
1

|λn|2
1

T 2
E|

∫ T

0

|dX(t, ω)||2].

And

E|
e−iλnT X(T, ω) −X(0, ω)

λnT
|2

≤
1

|λnT |2
[E|X(T, ω) − X(0, ω)|2 + 2E|X(0, ω)|2]

≤
c1

|λn|2
,

for large T and some constant c1.
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Also we have

E|

∫ T

0

|dX(t, ω)||2 ≤ (

∫ T

0

d||X(t, ω)||2)2 ≤ c2
2T

2,

for some constant c2.

Therefore, by the following relation,

lim
T→∞

1

|λn|2
1

T 2
E|

∫ T

0

|dX(t, ω)||2 ≤ lim
T→∞

1

|λn|2
1

T 2
c2
2T

2

≤
c3

|λn|2
,

for some constant c3. We have the conclusion. �

Proposition 2.3. Let X(t, ω) ∈ L2
s.a.p. and X(t, ω) ∈ BV . If

0 < ν < 1
2 then αn(ω) = o(|λn|

−ν), a.s.

Proof. For any A > 0,

P ({ω : |αn(ω)| > A|λn|
−ν}) ≤ (A|λn|

−ν)−2E|αn(ω)|2.

By Proposition 2.2., for some constant c1, the last term is not

greater than c1A
−2|λn|

2(ν−1).

Since there exists some constant c2 such that |λn| > c2n, we have,

for 0 < ν < 1
2 ,

c1|λn|
2(ν−1) < c3n

2(ν−1),

for some constant c3.

Since
∑∞

n=1 n2(ν−1) < ∞, we have

∞∑
n=1

P ({ω : |αn(ω)| > A|λn|
−ν}) < ∞.

By the Borel-Cantelli lemma, we have

lim
n→∞

|αn(ω)|

|λn|−ν
= 0, a.s.,

as desired. �
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