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Abstract. In this paper, we investigate the relations between the

McShane and Pettis integrals.

1. Introduction

A general integration theory based on the concept of Riemann type

integral sums was initiated around 1960 by Jaroslav Kurzweil and in-

dependently by Ralph Henstock.

The main virtue of the presentation of the Henstock–Kurzweil inte-

gral of real-valued functions is that no measure theory is required and

that even sophisticated convergence results can be derived using merely

elementary tools from the calculus without advanced topology.

The relatively new concepts of the Henstock–Kurzweil and McShane

integral based on Riemann type sums are an interesting challenge also

in the study of integration of Banach space-valued functions. The ad-

vantage of a relatively transparent and easy definition is undoubtedly

an invitation to do so.

The investigations started around 1990 by the work of R. A. Gordon

and since then attention has been paid to this field.

In this paper, we introduce the McShane and Pettis integral and

investigate its relations for bilinear triples.
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2. Preliminaries

Assume that X, Y and Z are Banach spaces and that there is a

bilinear mapping B : X × Y −→ Z. We use the short notation xy =

B(x, y) for the values of the bilinear form B for x ∈ X, y ∈ Y and

assume that

‖xy‖ ≤ ‖x‖ · ‖y‖.

Triples of Banach spaces X, Y, Z with these properties are called bilinear

triples and they are denoted by B = (X, Y, Z). For the case B =

(R, R, R), we always assume B(x, y) = xy (product).

The sets [c, d], (c, d), (c, d], [c, d) ⊂ [a, b] are called intervals in [a, b].

Let a compact interval [a, b] ⊂ R be given.

A finite collection {(ti, Ii) : i = 1, · · · , p} of nonoverlapping tagged

intervals is called an M-system in [a, b] if Ii ⊂ [a, b] for j = 1, · · · , p.

An M-system {(ti, Ii) : i = 1, · · · , p} in [a, b] is called an M-partition

of the interval [a, b] if

p
⋃

i=1

Ii = [a, b].

Given a positive function δ called a gauge on [a, b], a tagged interval

(t, I) is said to be δ-fine if

I ⊂ (t − δ(t), t + δ(t)).

M-systems are called δ−fine if all the tagged intervals {(ti, Ii), i =

1, · · · , p} are δ-fine.

A figure is a finite union of intervals. Let F be the collection of all

figures on [a, b].

A function g defined on F with Banach space-values is additive if for

nonoverlapping figures A and B, g(A ∪ B) = g(A) + g(B).

Throughout this paper we always assume that g is additive and

g([c, d]) = g((c, d)) = g((c, d])) = g([c, d)).
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Definition 2.1. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. We say that fdg is

McShane(or M)-integrable on [a, b] and v ∈ X is its integral if for every

ε > 0 there is a gauge δ on [a, b] such that for

S(fdg, P ) ≡

p
∑

i=1

f(ti)g(Ii)

we have
‖S(fdg, P ) − v‖ < ε

provided P = {(ti, Ii) : i = 1, · · · , p} is a δ-fine M-partition of [a, b]. In

this case we denote v = (M)
∫ b

a
f(s)dg(s). If there is no confusion we

omit the prefix (M).

The following theorems describe some of the basic properties of the

M-integral.

Theorem 2.1. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given.

(a) If fdg is M-integrable on [a, b], then fdg is M-integrable on every

subinterval of [c, d] ⊂ [a, b].

(b) If fdg is M-integrable on each of the interval I1 and I2, where

I1 and I2 are nonoverlapping and I1 ∪ I2 = I is an interval, then fdg is

M-integrable on I and

∫

I

fdg =

∫

I1

fdg +

∫

I2

fdg.

(c) If f1dg and f2dg are M-integrable on [a, b] and α and β are real

numbers, then (αf1 + βf2)dg is M-integrable on [a, b] and

∫ b

a

(αf1 + βf2)dg = α

∫ b

a

f1dg + β

∫ b

a

f2dg.

Proof. The proof of this theorem is essentially identical to that of

[4].
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Theorem 2.2. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. For given ε > 0

assume that the gauge δ on [a, b] is such that
∥

∥

∥

∥

∥

p
∑

i=1

f(ti)g(Ii) −

∫ b

a

fdg

∥

∥

∥

∥

∥

< ε

for every δ-fine partition P = {(ti, Ii) : i = 1, · · · , p} of [a, b].

If P ∗ = {(t∗i , I
∗

i ) : i = 1, · · · , m} is a δ-fine M-system in [a, b], then

we have
∥

∥

∥

∥

∥

m
∑

i=1

[

f(ti)g(I∗

i ) −

∫

I∗i

fdg

]
∥

∥

∥

∥

∥

≤ ε.

Proof. The proof is essentially identical to that of [4].

Theorem 2.2 is called the Saks-Henstock lemma for the M-integral.

Definition 2.2. Assume that g : F −→ X is given. We define for

a figure E in [a, b],

SV (g, P, E) = sup

∥

∥

∥

∥

∥

p
∑

i=1

xig(Ii)

∥

∥

∥

∥

∥

,

where P = {(ti, Ii)} is a partition with ∪p
i=1Ii = E and the supremum

is taken over all possible choice of xi ∈ X, i = 1, ..., p with ‖xi‖ ≤ 1.

We denote

SV (g, E) ≡ sup
P

SV (g, P, E),

where the supremum is taken over all P = {(ti, Ii)} with ∪p
i=1Ii = E.

If SV (g, E) < ∞, we say that g is of semi-bounded variation on E.

For a measurable set E, we define |E| as the Lebesgue measure of

E.

We say that a function g : F −→ X satisfies condition(P1) if given

ε > 0 there exists a η > 0 such that

SV (g, E) < ε
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whenever E is a figure with |E| < η.

The integrals also behave like the Lebesgue integrals. Let ‖f‖∞ ≡

sups∈[a,b] ‖f(s)‖.

Theorem 2.3. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. Suppose that

‖f‖∞ < ∞ and g satisfies the condition(P1).

(a) If fdg is M-integrable on [a, b], then for every measurable subset

E ⊂ [a, b] the M-integral
∫ b

a
fχEdg ≡

∫

E
fdg exists.

(b) For every set E ⊂ [a, b] with |E| = 0,
∫

E
fdg = 0.

(c) For disjoint measurable sets Ei, i = 1, 2, ..., we have

∫

∪∞

i=1
Ei

fdg =
∞
∑

i=1

∫

Ei

fdg.

Proof. The proof of this theorem is considerably analogue to that

of [4]. But the condition(P1) and ‖f‖∞ < ∞ are crucial to prove the

theorem.

Let X∗ be the set of all linear functionals on X and let B(X∗) =

{x∗ ∈ X∗ : ‖x∗‖ ≤ 1}.

Definition 2.3. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. Let x∗ be an element

of X∗. Then we say that x∗(fdg) is M-integrable on [a, b], and r ∈ R

is its integral if for every ε > 0 there is a gauge δ on [a, b] such that for

S(x∗(fdg), P ) ≡

p
∑

i=1

x∗(f(ti)g(Ii))

we have

‖S(x∗(fdg), P ) − r‖ < ε

provided P = {(ti, Ii) : i = 1, ·, p} is a δ-fine M-partition of [a, b]. In

this case we denote r =
∫ b

a
x∗(fdg).
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Definition 2.4. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. Let I be an index set.

Then {x∗

i (fdg) : x∗

i ∈ B(X∗), i ∈ I} is called M-equiintegrable if for

every ε > 0 there is a gauge δ on [a, b] such that
∥

∥

∥

∥

∥

p
∑

k=1

x∗

i (f(tk)g(Ik)) − (M)

∫ b

a

x∗

i (fdg)

∥

∥

∥

∥

∥

< ε

for every δ-fine M-partition P = {(tk, Ik) : k = 1, · · · , p} of [a, b] and

all i ∈ I.

Using the concept of M-equiintegrability we have the following con-

vergence result for the M-integral.

Theorem 2.4. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. If the sequence

{x∗

n(fdg) : x∗

n ∈ B(X∗), n = 1, 2, · · · } is M-equiintegrable and there is

a x∗ ∈ B(X∗) such that

lim
n→∞

x∗

n(f(t)g(I)) = x∗(f(t)g(I))

for all t ∈ [a, b] and all intervals I ⊂ [a, b], then x∗(fdg) is M-integrable

and

lim
n→∞

∫ b

a

x∗

n(fdg) =

∫ b

a

x∗(fdg).

Proof. The proof is essentially same as the proof of [2].

Now we introduce a concept of Pettis for our bilinear forms.

Definition 2.5. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. We say that fdg is

Pettis(or P -)integrable on [a, b] if for every measurable E ⊂ [a, b] there

is an element xE ∈ X that satisfies

x∗(xE) = (M)

∫

E

x∗(f(s)dg(s))

for every x∗ ∈ X∗. We denote xE = (P )
∫

E
fdg.
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3. M-integrable functions are P -integrable

We first prove some auxiliary results.

Lemma 3.1. Assume that B = (X, X, X) is a bilinear triple and that

f : [a, b] −→ X and g : F −→ X are given. Suppose that ‖f‖∞ < ∞

and g satisfies the condition(P1). If fdg is M-integrable on [a, b], then

there is a η > 0 such that for any finite collection {Jj : 1 ≤ j ≤ p} of

nonoverlapping intervals in [a, b] with
∑p

j=1 |Jj| < η we have

∥

∥

∥

∥

∥

p
∑

j=1

∫

Jj

fdg

∥

∥

∥

∥

∥

< ε.

Proof. Let ε > 0 be given. Since fdg is M-integrable on [a, b], there

exists a gauge δ on [a, b] such that

∥

∥

∥

∥

S(fdg, P ) −

∫ b

a

fdg

∥

∥

∥

∥

< ε

whenever P is a δ-fine M-partition of [a, b]. Fix a δ-fine M-partition of

[a, b]

P0 = {(ti, Ii) : 1 ≤ i ≤ q}.

Suppose that {Jj : 1 ≤ j ≤ p} is a finite collection of nonover-

lapping intervals in [a, b] such that
∑p

j=1 |Jj| ≤ η which also satisfies

that SV (g, E) < ε whenever |E| < η. By subdividing these intervals if

necessary, we may assume that for each j, Jj ⊂ Ii for some i. For each

i, 1 ≤ i ≤ q, let Mi = {j : 1 ≤ j ≤ p, Jj ⊂ Ii} and let

P = {(ti, Jj) : j ∈ Mi, i = 1, · · · , q}.

Note that P is a δ-fine M-system in [a, b].

Using the Saks–Henstock lemma, we have
∥

∥

∥

∥

∥

p
∑

j=1

∫

Jj

fdg

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

p
∑

j=1

[

∫

Jj

fdg − f(ti)g(Jj)

]
∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

p
∑

j=1

f(ti)g(Jj)

∥

∥

∥

∥

∥

< ε + ‖f‖∞ε.



154 D. RIM AND Y. KIM

This completes the proof.

Lemma 3.2. ([8]) Assume that F is an X-valued interval function

defined for intervals in [a, b] such that for every ε > 0 there is an η > 0

such that for any finite collection {Jj : j = 1, · · · , p} of nonoverlapping

intervals in [a, b] with
∑p

j=1 |Jj| < η we have ‖
∑p

j=1 F (Jj)‖ < ε. Then:

(a) For any sequence {Ii : i = 1, 2, · · · } of nonoverlapping intervals

Ii ⊂ [a, b], i ∈ N with
∑

∞

i=1 |Ii| ≤ (b − a) the limit

lim
n→∞

n
∑

i=1

F (Ii) =
∞
∑

i=1

F (Ii) ∈ X

exists.

(b) If for the sequence {Ii : i = 1, 2, · · · } of nonoverlapping intervals,

then
∑

∞

i=1 |Ii| < η, where η > 0 is the value of η corresponding to ε > 0

by the assumption, implies ‖
∑

∞

i=1 F (Ii)‖ ≤ ε.

Lemma 3.3. Assume that B = (X, X, X) is a bilinear triple and that

f : [a, b] −→ X and g : F −→ X are given. Suppose that ‖f‖∞ < ∞

and g satisfies the condition (P1). If fdg is M-integrable on [a, b], then

for every open set G ⊂ [a, b] there is an element xG ∈ X such that

∫

G

x∗(fdg) = x∗(xG)

for every x∗ ∈ X∗.

Proof. In the proof of [8, Lemma 31] we can find a measurable set

E0 ⊂ G with |E0| = |G| and a collection {Kn} of figures contained in

[a, b] such that E0 = ∪∞

n=1Kn, Ko
n ∩Ko

l = ∅ for n 6= l, where Ko denotes

the interior of K, and Kn is a finite union of non-overlapping intervals

in [a, b], i.e.,

Kn =

pn
⋃

i=1

In
i ,
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while {In
i : i = 1, · · · , pn, n ∈ N} forms an at most countable system of

non-overlapping intervals contained in E0. Since ∪p
n=1Kn ⊂ E0, p ∈ N,

we have

p
∑

n=1

|Kn| =

∣

∣

∣

∣

∣

p
⋃

n=1

Kn

∣

∣

∣

∣

∣

≤ |E0| = |G| ≤ |[a, b]| < ∞.

This gives

∞
∑

n=1

|Kn| =
∞
∑

n=1

∣

∣

∣

∣

∣

pn
⋃

i=1

In
i

∣

∣

∣

∣

∣

=
∞
∑

n=1

pn
∑

i=1

|In
i | < ∞,

and by Lemmas 3.1 and 3.2 we obtain the existence of the limit

lim
m→∞

m
∑

n=1

pn
∑

i=1

F (In
i ) = lim

m→∞

m
∑

n=1

F (Kn) ≡ xG ∈ X,

where F is a McShane primitive of fdg.

Given x∗ ∈ X∗, the real function x∗(fdg) is M-integrable for every

measurable subset of [a, b]. Since |G−E0| = 0 and E0 ⊂ G, by Theorem

2.3 we have
∫

G

x∗(fdg) =

∫

E0

x∗(fdg).

Further we have
∫

E0

x∗(fdg) =

∫

∪∞

n=1
Kn

x∗(fdg) =

∫

∪∞

n=1
∪

pn
i=1

In
i

x∗(fdg)

= lim
m→∞

∫

∪m
n=1

∪
pn
i=1

In
i

x∗(fdg) = lim
m→∞

x∗

(

∫

∪m
n=1

∪
pn
i=1

In
i

fdg

)

= lim
m→∞

x∗

(

∫

∪
m
n=1

Kn

fdg

)

= lim
m→∞

x∗

(

m
∑

n=1

F (Kn)

)

= x∗(xG),

and
∫

G
x∗(fdg) = x∗(xG) for every x∗ ∈ X∗. The proof is complete.
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Lemma 3.4. Assume that B = (X, X, X) is a bilinear triple and that

f : [a, b] −→ X and g : F −→ X are given. Suppose that ‖f‖∞ < ∞

and g satisfies the condition (P1). If fdg is M-integrable on [a, b], then

for every closed set H ⊂ [a, b] there is an element xH ∈ X such that

∫

H

x∗(fdg) = x∗(xH)

for every x∗ ∈ X∗.

Proof. If H ⊂ [a, b] is closed, then [a, b] − H is open and for every

x∗ ∈ X∗ we have

x∗

(

(M)

∫ b

a

fdg

)

=

∫ b

a

x∗(fdg) =

∫

H

x∗(fdg) +

∫

[a,b]−H

x∗(fdg)

=

∫

H

x∗(fdg) + x∗(x[a,b]−H),

where for the open set [a, b] − H the element x[a,b]−H ∈ X is given by

Lemma 3.3. Hence

∫

H

x∗(fdg) = x∗

(

(M)

∫

[a,b]

fdg − x[a,b]−H

)

,

and we can take

xH = (M)

∫ b

a

fdg − x[a,b]−H ∈ X.

Lemma 3.5. Assume that B = (X, X, X) is a bilinear triple and that

f : [a, b] −→ X and g : F −→ X are given. Suppose that ‖f‖∞ < ∞

and g satisfies the condition (P1). If fdg is M-integrable on [a, b] and

G ⊂ [a, b] is open, then for every ε > 0 there is an η > 0 such that if

|G| < η, then ‖xG‖ < ε, where xG ∈ X is such that
∫

G
x∗(fdg) = x∗(xG)

for every x∗ ∈ X∗.
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Proof. As in the proof of Lemma 3.3 we say that there exists a

sequence of sets Kn ⊂ G, n ∈ N, which are finite unions of nonoverlap-

ping intervals and satisfy Ko
n ∩ Ko

l = ∅ for n 6= l, such that for every

x∗ ∈ X∗ we have

∫

G

x∗(fdg) = lim
m→∞

x∗

(

m
∑

n=1

F (Kn)

)

= x∗(xG).

By Lemmas 3.1 and 3.2, for every ε > 0 there is an η > 0 such that if
∑

∞

n=1 |Kn| < η then ‖
∑

∞

n=1 F (Kn)‖ = ‖xG‖ < ε. Hence the lemma is

proved.

Theorem 3.6. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. Suppose that

‖f‖∞ < ∞ and g satisfies the condition (P1). If fdg is M-integrable

on [a, b], then fdg is P -integrable.

Proof. We need to prove only that for every measurable subset E of

[a, b] there is an element xE ∈ X which satisfies x∗(xE) =
∫

E
x∗(fdg)

for every x∗ ∈ X∗.

Suppose that E is a measurable subset of [a, b]. Then there exists a

sequence of open sets Gn ⊂ [a, b], n ∈ N, such that

E ⊂ · · · ⊂ Gn+1 ⊂ Gn ⊂ · · · and |Gn − E| <
1

2n

and a sequence of closed sets Hn ⊂ [a, b], n ∈ N, such that

· · · ⊂ Hn ⊂ Hn+1 ⊂ · · · ⊂ E and |E − Hn| <
1

2n
.

Since Gn ⊂ [a, b], n ∈ N, are open sets, by Lemma 3.3 there exists

xGn , n ∈ N, such that

∫

Gn

x∗(fdg) = x∗(xGn)
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for every x∗ ∈ X∗. Let ε > 0 be given and let η > 0 be the value

corresponding to ε/2 by Lemma 3.5. Then there exists N ∈ N, such

that 1/n < η if n ≥ N and therefore |Gn − Hn| < η for n ≥ N.

Assume that m1, m2 > N. Then

|x∗(xGm1
− xGm2

)| =

∣

∣

∣

∣

∣

∫

Gm1

x∗(fdg) −

∫

Gm2

x∗(fdg)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Gm1

x∗(fdg) −

∫

HN

x∗(fdg) −

∫

Gm2

x∗(fdg) +

∫

HN

x∗(fdg)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Gm1
−HN

x∗(fdg) −

∫

Gm2
−HN

x∗(fdg)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Gm1
−HN

x∗(fdg)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Gm2
−HN

x∗(fdg)

∣

∣

∣

∣

∣

≤ ‖x∗‖(‖xGm1
−HN

‖ + ‖xGm2
−HN

‖) ≤ ‖x∗‖ε

because Gm1
− HN ⊂ GN − HN and |Gm1

− HN | ≤ |GN − HN | < η,

and similarly |Gm2
− HN | < η.

Hence for every x∗ ∈ B(X∗) we have |x∗(xGm1
−xGm2

)| < ε provided

m1, m2 > N and therefore ‖xGm1
− xGm2

‖ < ε for m1, m2 > N, the

sequence xGn ∈ X, n ∈ N, is therefore Cauchy, and consequently the

limit limm→∞ xGm = xE ∈ X exists.

Moreover, we have E ⊂ ∩∞

m=1Gm and ∩∞

m=1Gm − E ⊂ Gn − E for

every n ∈ N and therefore | ∩∞

m=1 Gm − E| = 0. Hence

x∗(xE) = lim
m→∞

x∗(xGm) = lim
m→∞

∫

Gm

x∗(fdg)

=

∫

∩
∞

m=1
Gm

x∗(fdg) =

∫

E

x∗(fdg)

for all x∗ ∈ X∗.
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This holds for every measurable set E ⊂ [a, b]. Therefore, by defini-

tion, fdg is P-integrable, (P )
∫

E
x∗(fdg = x∗(xE), and the theorem is

proved.

4. The Pettis integral and its relation to the McShane integral

Lemma 4.1. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. Suppose that

fdg is P-integrable. Then fdg is M-integrable if and only if the set

{x∗(fdg) : x∗ ∈ B(X∗)} is M-equiintegrable.

Proof. It is obvious by definition that the set {x∗(fdg) : x∗ ∈

B(X∗)} is M-equiintegrable provided fdg is M-integrable. Assume that

{x∗(fdg) : x∗ ∈ B(X∗)} is M-equiintegrable. Then, by definition, for

every ε > 0 there exists a gauge δ on [a, b], such that for every δ−fine

M-partition P = {(ti, Ii) : i = 1, ..., q} of [a, b] and x∗ ∈ B(X∗) we have

∣

∣

∣

∣

∣

q
∑

i=1

x∗(f(ti)g(Ii)) −

∫ b

a

x∗(fdg)

∣

∣

∣

∣

∣

< ε.

Since fdg is P-integrable, we have
∫ b

a
x∗(fdg) = x∗

(

(P )
∫ b

a
fdg

)

, and

q
∑

i=1

x∗(f(ti)g(Ii) = x∗

(

q
∑

i=1

f(ti)g(Ii)

)

holds evidently. Hence for every δ−fine M-partition P = {(ti, Ii) : i =

1, ..., q} of [a, b] and x∗ ∈ B(X∗) we have

∣

∣

∣

∣

x∗

(

S(fdg, P ) −

∫ b

a

fdg

)
∣

∣

∣

∣

< ε,

and this yields immediately

∥

∥

∥

∥

S(fdg, P ) −

∫ b

a

fdg

∥

∥

∥

∥

< ε
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for every δ−fine M-partition P = {(ti, Ii) : i = 1, ..., q}. So we obtain

that fdg is M-integrable on [a, b]( and (M)
∫ b

a
fdg = (P )

∫ b

a
fdg).

For the next theorem we need to assume that the ball B(X∗) has

the following properties.

Property(P2): There exists a sequence {x∗

n} ⊂ B(X∗) such that the

closure of {x∗

n} contains B(X∗) and {x∗

n(fdg)} is M-equiintegrable on

[a, b].

Theorem 4.2. Assume that B = (X, X, X) is a bilinear triple and

that f : [a, b] −→ X and g : F −→ X are given. Suppose that X

satisfies the condition(P2) and g is semi-bounded variation on [a, b].

Then fdg is M-integrable on [a, b].

Proof. Assume that x∗ ∈ B(X∗) is given. Since X satisfies the

condition(P2), there exists a sequence {x∗

k} ⊂ {x∗

n} such that

(4.1) lim
k→∞

‖x∗

k − x∗‖ = 0,

and {x∗

k(fdg)} is M-equiintegrable. So by definition there is a gauge δ

on [a, b] such that

(4.2)

∣

∣

∣

∣

∣

p
∑

i=1

x∗

k(f(ti)g(Ii)) −

∫ b

a

x∗

k(fdg)

∣

∣

∣

∣

∣

< ε

Since {x∗

k(fdg)} is M-equiintegrable and for every t ∈ [a, b] and every

interval I in [a, b] limk→∞ x∗

k(f(t)g(I)) = x∗(f(t)g(I)), by Theorem 2.4,

x∗(fdg) is M-integrable and limk→∞

∫ b

a
x∗

k(fdg) =
∫ b

a
x∗(fdg). So there

is a k0 > N such that

(4.3)

∣

∣

∣

∣

∫ b

a

x∗

k(fdg) −

∫ b

a

x∗(fdg)

∣

∣

∣

∣

< ε

Let P = {(ti, Ii) : i = 1, ..., p} is a δ−fine M-partition of [a, b] and let

k > k0. Then we get
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∣

∣

∣

∣

∣

q
∑

i=1

x∗(f(ti)g(Ii)) −

∫ b

a

x∗(fdg)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

q
∑

i=1

[x∗(f(ti)g(Ii)) − x∗

k(f(ti)g(Ii))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

x∗

k(f(ti)g(Ii)) −

∫ b

a

x∗

k(fdg)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ b

a

x∗

k(fdg) −

∫ b

a

x∗(fdg)

∣

∣

∣

∣

< ‖f‖∞ · ‖x∗

k − x∗‖ · SV (g, [a, b]) + ε + ε

< [2 + ‖f‖∞ · SV (g, [a, b])]ε.

Since x∗ ∈ B(X∗) was arbitrary, we see that {x∗(fdg) : x∗ ∈ B(X∗)}

is M-equiintegrable. By Lemma 4.1, fdg is M-integrable on [a, b]. .
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