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SEMI–COMPATIBILITY AND FIXED POINTS OF

EXPANSION MAPPINGS IN 2–METRIC SPACES

Bijendra Singh* and Shobha Jain**

Abstract. This paper introduces the notion of semi-compatible

self-maps in 2-metric spaces and establishes a fixed point theorem for

four self-maps, satisfying an implicit relation through semi-compatibility
of a pair of self-maps. This results in another fixed point theorem for

four expansion maps which generalizes and improves many results of

Kang et. al. [5] with an application.

1. Introduction

The concept of 2-metric space was initially given by Gahler [3]

whose abstract properties were suggested by the area of function in

Euclidean space. Iseki [4] set out the tradition of proving fixed point

theorem in 2-metric spaces employing various contractive conditions.

Later on, Naidu and Prasad [7] introduced the concept of weak com-

mutativity while Murthy et. al. [6] introduced the concept of compat-

ible maps in 2-metric spaces. In [2], Cho, Sharma and Sahu introduced

the concept of semi-compatibility maps in d-topological spaces. They

defined a pair of self-maps (S, T ) to be semi-compatible if the condi-

tions (i) Sy = Ty implies STy = TSy (ii) {Sxn} → x, {Txn} → x

implies STxn → Tx, as n → ∞, hold. However, (ii) implies (i), tak-

ing xn = y and x = Ty = Sy. So in a 2-metric space, we define

semi-compatibility by the condition (ii) only.
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The study of common fixed points of expansion type mappings

has been an active field of research activity during two decades. In

[5], Kang et. al. have established some remarkable results for two

surjective self-maps satisfying an expansive condition for fixed point

theory in 2-metric spaces.

In the beginning we prove some properties of semi-compatible maps

in 2-metric spaces and establish a fixed point theorem for four self-

maps, two of which are semi-compatible and the remaining two are

weak-compatible. For this, we employ a new class F4 of functions

from (R+)4 to R satisfying some conditions.

As an application a linear characterization of F ∈ F4 has to be

established. It has been applied to prove another fixed point theorem

for four expansive self-maps. This theorem turns out to be a general-

ization and improvement of many results of [5] to four self-maps. At

the same time, a condition of F4 results in the uniqueness of the fixed

point unlike [5].

2. Preliminaries

Let X be a non-empty set with real-valued function d on X×X×X

satisfying the followings:

(1) d(x, y, z) = 0 if at least two of x, y, z are equal,

(2) d(x, y, z) = d(p(x, y, z)) for all x, y, x ∈ X and each permuta-

tion p(x, y, z) of x, y, z,

(3) d(x, y, z) ≤ d(x, y, w) + d(x,w, z) + d(w, y, z) for all x, y, z,

w ∈ X.

The function d is called a 2-metric on X and the pair (X, d) is called

a 2-metric space.

A sequence {xn} is said to be 2-convergent to a point x ∈ X

if limn→∞ d(xn, x, a) = 0, and is said to be 2-Cauchy sequence if

limn,m→∞ d(xn, xm, a) = 0 for all a ∈ X. The 2-metric space (X, d)
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is called complete if every Cauchy sequence in X converges to a point

of X.

For a pair of self-maps (S, T ) on a 2-metric space (X, d):

(I) (S, T ) is said to be compatible if limn→∞ d(STxn, TSxn, a) = 0

for all a ∈ X, whenever the sequence {xn} is a sequence in X such

that limn→∞ Txn = limn→∞ Sxn = x.

(II) (S, T ) is said to be semi-compatible if limn→∞ d(STxn, Tx, a) =

0 for all a ∈ X, whenever the sequence {xn} is a sequence in X such

that limn→∞ Txn = limn→∞ Sxn = x.

(III) (S, T ) is said to be weak-compatible or coincidently commuting

if Sy = Ty for some y ∈ X then TSy = STy.

Proposition 2.1. If S and T are semi-compatible self-maps on a

2-metric space (X, d) then the pair (S, T ) is weak-compatible.

Proof. Since (S, T ) is semi-compatible, limn→∞ d(STxn, Tx, a) =

0 for all a ∈ X, whenever the sequence {xn} is a sequence in X

such that limn→∞ Txn = limn→∞ Sxn = x. Take xn = y and x =

Ty = Sy. Since (S, T ) is semi-compatible, STy = Tx = TSy, i.e.,

STy = TSy. �

However, weak-compatibility does not imply semi-compatibility. It

is clear from Example 2.1 that the pair of self-maps (I, S) is weak-

compatible but it is not semi-compatible.

Proposition 2.2. If S and T are compatible self-maps on a 2-

metric space (X, d) and T is continuous then the pair (S, T ) is semi-

compatible.

Proof. Let {Sxn} → x and let {Txn} → x. Since T is con-

tinuous, TSxn → Tx. Since the pair (S, T ) is compatible, we get

limn→∞ d(STxn, TSxn, a) = 0, i.e., limn→∞ d(STxn, Tx, a) = 0. So

(S, T ) is semi-compatible. �
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Here we give an example of pair of self-maps (I, S) on a 2-metric

space, which is compatible but not semi-compatible. Further, we see

that the semi-compatibility of a pair (S, I) need not imply the semi-

compatibility of (I, S).

Example 2.1. Let X = {0, 1, 1

2
, 1

3
, 1

4
, · · · , 1

n
, · · · }. Define d : X ×

X×X → (0,∞) by d(x, y, z) = 0 if x, y, z are distinct and { 1

n
, 1

n+1
} ⊂

{x, y, z}, = 1 otherwise. Then (X, d) is a 2-metric space as shown

in [7]. Let I be the identity on X and define a self-map S as follows:

S( 1

n
) = 1

n+2
, S(0) = 1 and xn = 1

n
. Then

lim
n→∞

d(Ixn, 0, a) = lim
n→∞

d(xn, 0, a) = 0,

lim
n→∞

d(Sxn, 0, a) = lim
n→∞

d(
1

n + 2
, 0, a) = 0

for all a ∈ X. Thus {xn} and {Sxn} converge to x = 0. Now, the pair

(I, S) is commuting. Hence it is compatible. But {ISxn} = {Sxn} →

0 6= S(0) as {Sxn} → 0, and we get that (I, S) is not semi-compatible.

Also for any sequence {xn} → x

lim
n→∞

d(SIxn, Ix, a) = lim
n→∞

d(Sxn, x, a) = 0.

Thus (S, I) is semi-compatible.

The above example gives an important aspect of semi-compatibility

since the pair (I, S) is commuting hence it is weakly commuting, com-

patible and weak-compatible but it is not semi-compatible.

Definition 2.1. ([8]) Let F4 be the class of upper semi-continuous

functions on the right from (R+)4 → R such that for some h ∈ (0, 1)

(1) F (u, v, u, v) ≥ 0 implies v ≤ hu.

(2) F (u, v, v, u) ≥ 0 implies v ≤ hu.

(3) F (u, u, 0, 0) ≥ 0 implies u = 0.
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Remark 2.1. It follows from the first two conditions of F4 that

for F ∈ F4,

(1) F (0, L, 0, L) ≥ 0 implies L = 0.

(2) F (0, L, L, 0) ≥ 0 implies L = 0.

S. L. Singh [9] proved the following.

Lemma 2.3. ([9]) Let {xn} be a sequence in a complete 2-metric

space X. If there exists a h ∈ (0, 1) such that

d(xn, xn+1, a) ≤ h · d(xn−1, xn, a)

for all a ∈ X and all n, then {xn} converges to a point in X.

Before proving the main result we need the following lemma.

Lemma 2.4. Let A,B, S and T be four self-maps of a complete

2-metric space (X, d) such that

(i) A(X) ⊂ T (X) and B(X) ⊂ S(X),

(ii) for some F ∈ F4,

F [d(Sx, Ty, z), d(Ax,By, z), d(Ax, Sx, z), d(By, Ty, z)] ≥ 0

for all x, y, z ∈ X.

Then the sequence {yn} converges to a point in X, where the se-

quences {xn} and {yn} are defined by Ax2n = Tx2n+1 = y2n+1 and

Bx2n+1 = Sx2n+2 = y2n+2 for n = 0, 1, 2, · · · .

Proof. For some x0 ∈ X, define sequences {xn} and {yn} in X as

follows: Ax2n = Tx2n+1 = y2n+1 and Bx2n+1 = Sx2n+2 = y2n+2 for

n = 0, 1, 2, · · · .

Put x = x2n and y = x2n+1 in (ii), we get

F [d(Sx2n, Tx2n+1, z),d(Ax2n, Bx2n+1, z), d(Ax2n , Sx2n, z),

d(Bx2n+1, Tx2n+1, z)] ≥ 0
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implies that

F [d(y2n, y2n+1, z),d(y2n+1, y2n+2, z), d(y2n , y2n+1, z),

d(y2n+1, y2n+2, z)] ≥ 0

for all z ∈ X. That is, F [U, V, U, V ] ≥ 0 implies that V ≤ h ·U , where

U = d(y2n, y2n+1, z), V = d(y2n+1, y2n+2, z), and h ∈ (0, 1). So

d(y2n+1, y2n+2, z) ≤ h · d(y2n, y2n+1, z)

for h ∈ (0, 1).

Similarly, if we take x = x2n and y = x2n−1 in (ii), then we get

F [d(Sx2n, Tx2n−1, z),d(Ax2n, Bx2n−1, z), d(Ax2n , Sx2n, z),

d(Bx2n−1, Tx2n−1, z)] ≥ 0

implies that

F [d(y2n, y2n−1, z), d(y2n+1, y2n, z),d(y2n+1, y2n, z),

d(y2n, y2n+1, z)] ≥ 0

for all z ∈ X. That is, F [U, V, V, U ] ≥ 0 implies that V ≤ h ·U , where

U = d(y2n, y2n−1, z), V = d(y2n+1, y2n, z), and h ∈ (0, 1). So

d(y2n, y2n+1, z) ≤ h · d(y2n−1, y2n, z)

for h ∈ (0, 1). Therefore, for all n even or odd d(yn, yn+1, z) ≤ h ·

d(yn−1, yn, z) for h ∈ (0, 1). By Lemma 2.3, {yn} converges to some

u ∈ X. �

It has been shown in [3] that, although d is a continuous function

of any of its three augments, it need not to be continuous in two

augments. If it is continuous in two augments then it is continuous in

all three augments. For brevity, a d, which is continuous in all of its

augments, will be called continuous.

From now on, the 2-metric d is assumed to be continuous.
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3. Main results

Theorem 3.1. Let A,B, S and T be four self-maps of a complete

2-metric space (X, d) satisfying (i), (ii) and

(iii) (S,A) is semi-compatible and (T,B) is weak-compatible,

(iv) A is continuous.

Then the four self-maps A,B, S and T have a unique common fixed

point.

Proof. Let x0 ∈ X. From the condition (i) we can construct se-

quences {xn} and {yn} in X such that Ax2n = Tx2n+1 = y2n+1 and

Bx2n+1 = Sx2n+2 = y2n+2 for all n. By Lemma 2.4, {yn} → u ∈ X.

Also its subsequences converge to u. That is,

{Ax2n} → u & {Sx2n} → u,(1)

{Bx2n+1}tou & {Tx2n+1}tou.(2)

Since (S,A) is semi-compatible, SAx2n → Au. Since A is continuous,

A2x2n → Au.

Step 1: Put x = Ax2n and y = x2n+1 in (ii), we get

F [d(SAx2n, Tx2n+1, z),d(A2x2n, Bx2n+1, z), d(A2x2n, SAx2n, z),

d(Bx2n+1, Tx2n+1, z)] ≥ 0

for all z ∈ X. Letting n → ∞, we get

F [d(Au, u, z), d(Au, u, z), d(Au,Au, z), d(u, u, z)] ≥ 0

for all z ∈ X. That is,

F [d(Au, u, z), d(Au, u, z), 0, 0] ≥ 0

for all z ∈ X, which gives d(Au, u, z) = 0. Hence Au = u. Since

A(X) ⊂ T (X), there exists a v ∈ X such that u = Au = Tv.
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Step 2: Put x = x2n and y = v in (ii), we get

F [d(Sx2n, T v, z), d(Ax2n , Bv, z),d(Ax2n, Sx2n, z),

d(Bv, Tv, z)] ≥ 0

for all z ∈ X. Letting n → ∞ and using u = Tv, we get

F [d(u, u, z), d(u,Bv, z), d(u, u, z), d(u,Bv, z)] ≥ 0

for all z ∈ X. That is,

F [0, d(Bv, u, z), 0, d(u,Bv, z)] ≥ 0

for all z ∈ X, which gives d(u,Bv, z) = 0 for all z ∈ X. So u = Bv.

Hence u = Bv = Tv. Since (T,B) is weak-compatible, we have

Bu = Tu.

Step 3: Put x = x2n and y = u in (ii), we get

F [d(Sx2n, Tu, z), d(Ax2n , Bu, z), d(Ax2n , Sx2n, z), d(Bu, Tu, z)] ≥ 0

for all z ∈ X. Letting n → ∞ and using Tu = Bu, we get

F [d(u,Bu, z), d(u,Bu, z), d(u, u, z), d(Bu,Bu, z)] ≥ 0

for all z ∈ X. Let U = d(u,Bu, z). Then F [U,U, 0, 0] ≥ 0 implies

U = 0. That is, d(u,Bu, z) = 0 for all z ∈ X, which gives u = Bu.

Hence u = Bu = Tu. Since B(X) ⊂ S(X), there exists a w ∈ X such

that u = Bu = Sw. Therefore, u = Bu = Tu = Sw.

Step 4: Put x = w and y = u in (ii), we get

F [d(Sw, Tu, z), d(Aw,Bu, z), d(Aw,Sw, z), d(Bu, Tu, z)] ≥ 0

foe all z ∈ X.

F [d(u, u, z), d(Aw, u, z), d(Aw, u, z), d(u, u, z)] ≥ 0
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implies that

F [0, d(Aw, u, z), d(Aw, u, z), 0] ≥ 0

for all z ∈ X. Let U = d(Aw, u, z). Then F [0, U, U, 0] ≥ 0, which

gives U = 0, i.e., d(Aw, u, z) = 0 for all z ∈ X. So u = Aw. Hence

u = Aw = Sw. Since (S,A) is semi-compatible, it is weak-compatible.

So we have Au = Su. Therefore, u = Au = Su. Hence u = Au =

Su = Bu = Tu.

Step 5 (Uniqueness): Let u1 be another common fixed point of

A,B, S and T . Then u1 = Au1 = Bu1 = Su1 = Tu1. Put x = u and

y = u1 in (ii), we get

F [d(u, u1, z), d(u, u1, z), d(u, u, z), d(u1, u1, z)] ≥ 0,

F [d(u, u1, z), d(u, u1, z), 0, 0] ≥ 0

for all z ∈ X. By the same reasoning as given in Step 3, we have

d(u, u1, z) = 0 for all z ∈ X, which gives u = u1. Hence u is a unique

common fixed point A,B, S and T . �

Proposition 3.2. Let F be a function from (R+)4 → R such

that F (t1, t2, t3, t4) = t1 − at2 − bt3 − ct4, where a, b, c ∈ R
+ with

b < 1, c < 1 and a > 1. Then F ∈ F4.

Proof. For u, v ∈ R
+, F (u, v, u, v) ≥ 0 implies that v ≤ h1u, where

h1 = 1−b
a+c

< 1, as b < 1 and a + b + c > 1. Again, F (u, v, v, u) ≥ 0

implies that v ≤ h2u, where h2 = 1−c
a+b

< 1, as c < 1. F (u, u, 0, 0) ≥ 0

implies that (1− a)u ≥ 0, which implies that (a− 1)u ≤ 0, (a > 1).

So u ≤ 0, which gives u = 0. Now, take h = max{h1, h2}. Hence

F ∈ F4. �

In what follows we proceed to arrive at a generalization of Kang

et. al. [5].
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Corollary 3.3. Let A,B, S and T be four self-maps of a complete

2-metric space (X, d) satisfying (i), (iii), (iv) and

(v) for some a, b, c ∈ R
+, a > 1, b < 1, c < 1,

d(Sx, Ty, z) ≥ a · d(Ax,By, z) + b · d(Ax, Sx, z) + c · d(By, Ty, z)

for all x, y, z ∈ X, or

(vi) d(Sx, Ty, z) ≥ ad(Ax,By, z) for all x, y, z ∈ X and some a > 1.

Then the four self-maps A,B, S and T have a unique common fixed

point.

In [5], Kang , Chang and Ryu proved the following two results:

Theorem 3.4. ([5]) Let S and T be surjective mappings from a

complete 2-metric space (X, d) into itself. Suppose that there exist

non-negative real numbers a < 1, b < 1, c (a + b + c > 1) such that

d(Sx, Ty, z) ≥ a · d(x, Sx, z) + b · d(x, Ty, z) + c · d(x, y, z)

for all x, y, z ∈ X. Then S and T have a unique common fixed point.

Corollary 3.5. ([5]) Let S and T be surjective mappings from a

complete 2-metric space (X, d) into itself. Suppose that there exists

a non-negative real number c > 1 such that

d(Sx, Ty, z) ≥ c · d(x, y, z)

for all x, y, z ∈ X. Then S and T have a unique common fixed point.

Note that in Theorem 3.4 [5] the uniqueness was not proved there

and it is not even true.

Corollary 3.5 generalizes the results from two self-maps to four self-

maps and it also improves the first result in establishing the unique-

ness too.
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Theorem 3.6. Let A,S and T be three self-maps of a complete

2-metric space (X, d) satisfying (iv) and

(vii) A(X) ⊂ T (X) ∩ S(X),

(viii) for some F ∈ F4,

F [d(Sx, Ty, z), d(Ax,Ay, z), d(Ax, Sx, z), d(Ay, Ty, z)] ≥ 0

for all x, y, z ∈ X.

(ix) (S,A) is semi-compatible and the pair (T,A) is weak-compatible.

Then A,S and T have a unique common fixed point.

Proof. The result follows from Theorem 3.1, by taking B = A. �

Corollary 3.7. Let A,S and T be three self-maps of a complete

2-metric space (X, d) satisfying (iv), (vii), (ix) and

(x) for some a, b, c ∈ R
+, a > 1, b < 1, c < 1,

d(Sx, Ty, z) ≥ a · d(Ax,Ay, z) + b · d(Ax, Sx, z) + c · d(Ay, Ty, z)

or (xi) d(Sx, Ty, z) ≥ a · d(Ax,Ay, z) for all x, y, z ∈ X and some

a > 1.

Then A,S and T have a unique common fixed point.

Corollary 3.8. Let A and S be two self-maps of a complete

2-metric space (X, d). If A is continuous and

(1) A(X) ⊂ S(X),

(2) for some F ∈ F4,

F [d(Sx, Sy, z), d(Ax,Ay, z), d(Ax, Sx, z), d(Ay, Sy, z)] ≥ 0

for all x, y, z ∈ X.

(3) (S,A) is semi-compatible.

Then A and S have a unique common fixed point.

Proof. The result follows from Theorem 3.6, by taking T = S. �



136 B. SINGH AND S. JAIN

Corollary 3.9. Let S and T be two surjective self-maps of a

complete 2-metric space (X, d) such that

(xii) for some a, b, c ∈ R
+, a > 1 and b, c ∈ [0, 1),

d(Sx, Ty, z) ≥ a · d(x, y, z) + b · d(x, Sx, z) + c · d(y, Ty, z)

or (xiii) d(Sx, Ty, z) ≥ a ·d(x, y, z) for all x, y, z ∈ X and some a > 1.

Then S and T have a unique common fixed point.
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