COMMON FIXED POINTS OF WEAK-COMPATIBLE MAPS ON D-METRIC SPACE

Bijendra Singh* and Shobha Jain**

Abstract

In [4], Dhage proved a result for common fixed point of two self-maps satisfying a contractive condition in D-metric spaces. This note proves a fixed point theorem for five self-maps under weakcompatibility in D-metric space which improves and generalizes the above mentioned result.

1. Introduction

Dhage [2] introduced D-metric space and proved the existence of unique fixed point of a self-map satisfying a contractive condition. Rhoades [7] generalized Dhage's contractive condition by increasing the number of factors and proved the existence of unique fixed point of a self-map in D-metric space. Recently, Dhage [4] extended Rhoades' above contractive condition to two maps. At the same time, Dhage [3] proved the existence of a unique common fixed point of a pair of self-maps under weak-compatibility.

Sessa [8] initiated the tradition of improving the commutative condition in fixed point theory by introducing the notion of weakly commuting mappings. Jungck [6] introduced a more general concept known as compatible mapping in metric spaces. Recently, Cho [1] proved the existence of a unique common fixed point of five self-maps using α-compatibility.

Received by the editors on April 04, 2004.
2000 Mathematics Subject Classifications: Primary 54H25, 47H10.
Key words and phrases: D-metric space, common fixed point, orbit, bounded orbit, complete orbit, weak-compatible.

In this paper, we prove the existence of unique common fixed point of five self-maps in a D-metric space under weak-compatibility using the contractive condition of Dhage [4]. This result generalizes and improves the result of Dhage [4] by increasing the number of self-maps from two to five and restricting the domain and that of boundedness and completeness to some orbits only.

2. Preliminaries

Definition 2.1. Let X be a non-empty set. A generalized metric (or D-metric) on X is a function from $X \times X \times X$ to \mathbb{R}^{+}(the set of non-negative real numbers) satisfying the followings:
(1) $D(x, y, z)=0$ if and only if $x=y=z$,
(2) $D(x, y, z)=D(p(x, y, z))$ for all $x, y, x \in X$ and each permutation $p(x, y, z)$ of x, y, z,
(3) $D(x, y, z) \leq D(x, y, w)+D(x, w, z)+D(w, y, z)$ for all x, y, z, $w \in X$.

The pair (X, D) is called a D-metric space.
Definition 2.2. A sequence $\left\{x_{n}\right\}$ of points in a D-metric space (X, D) is said to be D-convergent to a point $x \in X$ if for each $\epsilon>0$, there exists an $n_{0} \in \mathbb{N}$ such that $D\left(x_{m}, x_{n}, x\right)<\epsilon$ for all $m, n>n_{0}$. The sequence $\left\{x_{n}\right\}$ is said to be D-Cauchy if for each $\epsilon>0$, there exists an $n_{0} \in \mathbb{N}$ such that $D\left(x_{m}, x_{n}, x_{p}\right)<\epsilon$ for all $m, n, p>n_{0}$. A D-metric space (X, D) is said to be complete if every Cauchy sequence converges to some point of X.

Definition 2.3. Let T be a multivalued map on D-metric space (X, D). Let $x_{0} \in X$ be arbitrary. A sequence $\left\{x_{n}\right\}$ in X is said to be an orbit of T at x_{0} denoted by $O\left(T, x_{0}\right)$ if $x_{n-1} \in T^{n-1}\left(x_{0}\right)$ for all $n \in \mathbb{N}$. If T is a single-valued self-map on X then for $x_{0} \in X$, let $x_{1}=T x_{0}, x_{2}=T x_{1}=T^{2} x_{0}, \cdots, x_{n-1}=T^{n-1} x_{0}$. Then the sequence $\left\{x_{n}\right\}$ is called the orbit of T at the point x_{0} and is denoted
by $O\left(T, x_{0}\right)$.
Definition 2.4. Let (X, D) be a D-metric space. Let S and T be two set valued mappings from X into 2^{X}. For $x_{0} \in X$, let $x_{1} \in S x_{0}$, $x_{2} \in T x_{1} \subset T S x_{0}, x_{3} \in S x_{2} \subset S T S x_{0}$, etc. Then the sequence $\left\{x_{0}, x_{1}, x_{2}, \cdots\right\}=\left\{x_{n}\right\}$ is called an orbit of S and T at the point x_{0} and is denoted by $O\left(S, T, x_{0}\right)$. An orbit $O\left(S, T, x_{0}\right)$ is said to be complete if every Cauchy sequence converges to an element of X. An orbit $O\left(S, T, x_{0}\right)$ is said to be bounded if there exists $M>0$ such that $D(u, v, w) l e M$ for all $u, v, w \in O\left(S, T, x_{0}\right)$ and the number M is said to be a bound of the orbit $O\left(S, T, x_{0}\right)$.

Definition 2.5. A pair (S, T) of self-maps on a D-metric space (X, D) is said to be weak-compatible if $S y=T y$ for some $y \in X$ implies TSy $=$ STy.

We require the followings to prove the main result.
Proposition 2.1. Let P, Q and R be three self-maps on a D metric space (X, D) such that $P(X) \subset R(X)$ and $Q(X) \subset R(X)$. For some $x_{0} \in X$, define sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X as follows: $P x_{2 n}=R x_{2 n+1}=y_{2 n+1}$ and $Q x_{2 n+1}=R x_{2 n+2}=y_{2 n+2}$ for $n=$ $0,1,2, \cdots$. Then

$$
\left.\begin{array}{rl}
\left\{x_{0}, x_{1}, x_{2}, \cdots\right\} & =\left\{x_{n}\right\} \\
\left\{y_{1}, y_{2}, \cdots\right\} & =\left\{y_{n}\right\}
\end{array}=O\left(Q R^{-1}, P R^{-1} Q, x_{0}\right), P x_{0}\right) . ~ \$
$$

Proof. We have

$$
\begin{array}{rll}
y_{1}=P x_{0}=R x_{1} & \& & y_{2}=Q x_{1}=R x_{2} \\
y_{3}=P x_{2}=R x_{3} & \& & y_{4}=Q x_{3}=R x_{4} \\
\vdots & \& & \vdots
\end{array}
$$

Therefore, $x_{1} \in R^{-1} P x_{0}, x_{2} \in R^{-1} Q x_{1} \subset\left(R^{-1} Q\right)\left(R^{-1} P\right) x_{0}$, and $x_{3} \in R^{-1} P x_{2} \subset\left(R^{-1} P\right)\left(R^{-1} Q\right)\left(R^{-1} P\right) x_{0}$. Hence $\left\{x_{0}, x_{1}, x_{2}, \cdots\right\}=$
$\left\{x_{n}\right\}=O\left(R^{-1} P, R^{-1} Q, x_{0}\right)$. Also $y_{1}=P x_{0}, y_{2}=Q x_{1} Q\left(R^{-1} P\right) x_{0}=$ $\left(Q R^{-1}\right) P x_{0}, y_{3}=P x_{2}\left(P R^{-1}\right)\left(Q R^{-1}\right) P x_{0}$. Hence $\left\{y_{1}, y_{2}, y_{3}, \cdots\right\}=$ $\left\{y_{n}\right\}=O\left(Q R^{-1}, P R^{-1}, P x_{0}\right)$.

Note that if $A B(X) \subset R(X)$ and $S T(X) \subset R(X)$ then from Proposition 2.1,

$$
\begin{aligned}
& \left\{x_{n}\right\}=O\left(R^{-1} A B, R^{-1} S T, x_{0}\right) \\
& \left\{y_{n}\right\}=O\left(S T R^{-1}, A B R^{-1}, A B x_{0}\right)
\end{aligned}
$$

Lemma 2.2. (Dhage [5]) Let $\left\{x_{n}\right\} \subset X$ be bounded with D-bound M satisfying

$$
D\left(x_{n}, x_{n+1}, x_{m}\right) \leq f^{n}(M)
$$

for all $n \in \mathbb{N}$ and all $m>n+1$, where $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying $\sum_{n=1}^{\infty} f^{n}(t)<\infty$ for each $t \in \mathbb{R}^{+}$. Then $\left\{x_{n}\right\}$ is a D-Cauchy sequence.

Let Φ denote the set of functions $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying (1) ϕ is non-decreasing, (2) $\phi(t)<t$ for $t>0$, and (3) $\sum_{n=1}^{\infty} \phi^{n}(t)<\infty$.

Lemma 2.3. Let P, Q and R be three self-maps of a D-metric space (X, D) satisfying (i) $P(X) \subset R(X)$ and $Q(X) \subset R(X)$, (ii) for some $x_{0} \in X$ an orbit $O\left(Q R^{-1}, P R^{-1}, P x_{0}\right)$ is bounded, and (iii) for some $\phi \in \Phi$, some $\alpha \in\left[0, \frac{1}{3}\right]$ and $x, y, z \in O\left(R^{-1} P, R^{-1} Q, x_{0}\right)$

$$
\begin{aligned}
D(P x, Q y, R z) & \leq \phi \max \{D(R x, R y, R z), D(P x, R x, R z) \\
& D(Q y, R y, R z), \alpha D(P x, R y, R z), \alpha D(R x, Q y, R z)\}
\end{aligned}
$$

Then $\left\{y_{n}\right\}$ is a D-Cauchy sequence.
Proof. Let $x_{0} \in X$. As seen above we can construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $P x_{2 n}=R x_{2 n+1}=y_{2 n+1}$ and $Q x_{2 n-1}=$ $R x_{2 n}=y_{2 n}$ for all n. Thus the sequence $\left\{y_{n}\right\} \subset O\left(Q R^{-1}, P R^{-1}, P x_{0}\right)$ which is bounded. Let M be a bound of it then $D(x, y, z) \leq M$ for
all $x, y, z \in O\left(Q R^{-1}, P R^{-1}, P x_{0}\right)$. We show, by induction on n, that for $m \geq n+1$

$$
\begin{equation*}
D\left(y_{n}, y_{n+1}, y_{m}\right) \leq \phi^{n}(M) \tag{2.1}
\end{equation*}
$$

for all n. Putting $x=x_{0}, y=x_{1}$ and $z=x_{m}$ in the condition (iii), we get

$$
\begin{array}{r}
D\left(y_{1}, y_{2}, y_{m}\right) \leq \phi \max \left\{D\left(y_{0}, y_{1}, y_{m}\right), D\left(y_{0}, y_{1}, y_{m}\right), D\left(y_{1}, y_{2}, y_{m}\right),\right. \\
\left.\alpha D\left(y_{1}, y_{1}, y_{m}\right), \alpha D\left(y_{0}, y_{2}, y_{m}\right)\right\} \leq \phi(M)
\end{array}
$$

since each factor is less than M. Hence (2.1) holds for $n=1$. Again assuming that (2.1) holds for $n \leq p(=2 k$, say $)$, we will show that (2.1) holds for $n=p+1(=2 k+1)$. Putting $x=x_{2 k}, y=x_{2 k+1}$ and $z=x_{m}$ in the condition (iii), we get

$$
\begin{gathered}
D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right) \leq \phi \max \left\{D\left(y_{2 k}, y_{2 k+1}, y_{m}\right), D\left(y_{2 k}, y_{2 k+1}, y_{m}\right)\right. \\
D\left(y_{2 k+1}, y_{2 k+2}, y_{m}, \alpha D\left(y_{2 k+1}, y_{2 k+1}, y_{m}, \alpha D\left(y_{2 k}, y_{2 k+2}, y_{m}\right)\right\}\right. \\
=\phi \max \left\{D\left(y_{2 k}, y_{2 k+1}, y_{m}\right), \alpha D\left(y_{2 k+1}, y_{2 k+1}, y_{m}\right)\right. \\
\left.\alpha D\left(y_{2 k}, y_{2 k+2}, y_{m}\right)\right\},
\end{gathered}
$$

since $D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right)$ can not be maximum as for $t>0$ it will give $t<t$ which is a contradiction. If $t=0$, then $\left\{y_{n}\right\}$ is a constant sequence form $n=2 k$ onwards.

Case 1:

$$
\begin{aligned}
D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right) & \leq \phi\left\{D\left(y_{2 k}, y_{2 k+1}, y_{m}\right)\right\} \\
& \leq \phi \phi^{2 k}(M)=\phi^{2 k+1}(M)
\end{aligned}
$$

Case 2:

$$
\begin{aligned}
D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right) & \leq \phi\left\{\alpha D\left(y_{2 k+1}, y_{2 k+1}, y_{m}\right)\right\} \\
& \leq \phi\left(\alpha \left\{D\left(y_{2 k+1}, y_{2 k+1}, y_{2 k}\right)+D\left(y_{2 k+1}, y_{2 k}, y_{m}\right)\right.\right. \\
& \left.\left.+D\left(y_{2 k}, y_{2 k+1}, y_{m}\right)\right\}\right) \\
& \leq \phi\left(3 \alpha \phi^{2 k}(M)\right) \leq \phi^{2 k+1}(M) .
\end{aligned}
$$

Case 3:

$$
\begin{aligned}
D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right) & \leq \phi\left(\alpha D\left(y_{2 k}, y_{2 k+2}, y_{m}\right)\right) \\
& \leq \phi\left(\alpha \left\{D\left(y_{2 k}, y_{2 k+2}, y_{2 k+1}\right)+D\left(y_{2 k}, y_{2 k+1}, y_{m}\right)\right.\right. \\
& \left.\left.+D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right)\right\}\right) \\
& =\phi\left(\alpha \left\{D\left(y_{2 k}, y_{2 k+1}, y_{2 k+2}\right)+D\left(y_{2 k}, y_{2 k+1}, y_{m}\right)\right.\right. \\
& \left.\left.+D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right)\right\}\right) \\
& \leq \phi\left(2 \alpha \phi^{2 k}(M)+\alpha D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right)\right) \\
& <2 \alpha \phi^{2 k+1}(M)+\alpha D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right)
\end{aligned}
$$

implies $(1-\alpha) D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right) \leq 2 \alpha \phi^{2 k+1}(M)$. Since $\alpha \leq \frac{1}{3}$, $\frac{2 \alpha}{1-\alpha} \leq 1$. So we get $D\left(y_{2 k+1}, y_{2 k+2}, y_{m}\right) \leq \phi^{2 k+1}(M)$, which is (2.1) for $n=2 k+1$. Hence the equation (2.1) holds for $n=2 k+1$, if it is true for $n \leq 2 k$. Similarly, we can show that the equation (2.1) holds for $n=2 k+2$, if it is true for $n \leq 2 k+1$. Therefore, by induction on n, the equation (2.1) holds for all n. By Lemma $2.2,\left\{y_{n}\right\}$ is a D-Cauchy sequence in $O\left(Q R^{-1}, P R^{-1}, P x_{0}\right)$.

Remark 2.1. If we substitute $P=A B$ and $Q=S T$, then (iii) becomes

$$
\begin{aligned}
& D(A B x, S T y, R z) \leq \phi \max \{D(R x, R y, R z), D(A B x, R x, R z) \\
& \quad D(S T y, R y, R z), \alpha D(A B x, R y, R z), \alpha D(R x, S T y, R z)\}
\end{aligned}
$$

for some $\phi \in \Phi$, some $\alpha \in\left[0, \frac{1}{3}\right], x, y, z \in O\left(R^{-1} A B, R^{-1} S T, x_{0}\right)$, and $\left\{y_{n}\right\}=O\left(S T R^{-1}, A B R^{-1}, A B x_{0}\right)$ is a D-Cauchy sequence.

Remark 2.2. If for some $x, y, z \in X, D(x, y, z) \leq \phi(D(x, y, z))$, then $x=y=z$. If $D(x, y, z)>0$, then

$$
D(x, y, z) \leq \phi(D(x, y, z))<D(x, y, z)
$$

i.e., $D(x, y, z)<D(x, y, z)$, which is a contradiction.

Theorem 2.1. ([4, Theorem 2.1] Let $A, B: X \rightarrow X$ be self-maps and let X be orbitally bounded and orbitally complete D metric space and suppose that

$$
\begin{gathered}
D(A x, B y, z) \leq \phi \max \{D(x, y, z), D(x, A x, z), D(y, B y, z), \\
\alpha D(x, B y, z), \alpha D(A x, y, z)\}
\end{gathered}
$$

for all $x, y \in X, z \in \overline{O(A, B, x) \cup O(B, A, y)}$, some $\phi \in \Phi$ and $\alpha \in$ $\left[0, \frac{1}{3}\right]$. Then A and B have a unique common fixed point in X.

3. Main results

The following theorem generalizes this for five self-maps. It further improves it by restricting the domain and of boundedness and completeness to some orbits only.

Theorem 3.1. Let A, B, S, T and R be five self-maps of a D metric space (X, D) satisfying:
(3.i) $A B(X) \subset R(X)$ and $S T(X) \subset R(X)$.
(3.ii) For some $x_{0} \in X$, the orbit $O\left(S T R^{-1}, A B R^{-1}, A B x_{0}\right)$ is bounded and complete.
(3.iii) For some $\phi \in \Phi, z \in O\left(R^{-1} A B, R^{-1} S T, x_{0}\right)$, some $\alpha\left[0, \frac{1}{3}\right]$, and all $x, y \in X$

$$
\begin{aligned}
& D(A B x, S T y, R z) \leq \phi \max \{D(R x, R y, R z), D(A B x, R x, R z) \\
& D(S T y, R y, R z), \alpha D(A B x, R y, z), \alpha D(R x, S T y, R z)\}
\end{aligned}
$$

(3.iv) The pairs $(A B, R)$ and $T(S T, R)$ are weak compatible.
(3.v) $A B=B A, R B=B R, S T=T S, R T=T R$.

Then A, B, S, T and R have a unique common fixed point.
Proof. For some $x_{0} \in X$, construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $A B x_{2 n}=R x_{2 n+1}=y_{2 n+1}, S T x_{2 n+1}=R x_{2 n+2}=y_{2 n+2}$ for
all $n=0,1,2, \cdot$ Substituting $P=A B$ and $Q=S T$ in Lemma 2.3, then by Remark 2.2, $\left\{y_{n}\right\}$ is D-Cauchy in $O\left(S T R^{-1}, A B R^{-1}, A B x_{0}\right)$, which is complete. Therefore, $\left\{y_{n}\right\}$ converges to some $u \in X$. Also its subsequences $\left\{A B x_{2 n}\right\},\left\{S T x_{2 n+1}\right\},\left\{R x_{2 n}\right\}$ and $\left\{R x_{2 n+1}\right\}$ also converge to u. Hence

$$
\left.\begin{array}{rll}
\left\{A B x_{2 n}\right\} & \rightarrow u & \& \\
\left\{R x_{2 n}\right\} & \rightarrow u & \& \tag{3.2}
\end{array} \quad\left\{S T x_{2 n+1}\right\} \rightarrow u\right\}
$$

Step 1: Put $x=x_{2 n}$ and $y=x_{2 n+1}$ in the condition (3.iii), we get

$$
\begin{array}{r}
D\left(A B x_{2 n}, S T x_{2 n+1}, R z\right) \leq \phi \max \left\{D\left(R x_{2 n}, R x_{2 n+1}, R z\right)\right. \\
D\left(A B x_{2 n}, R x_{2 n}, R z\right), D\left(S T x_{2 n+1}, R x_{2 n+1}, R z\right), \\
\left.\alpha D\left(A B x_{2 n}, R x_{2 n+1}, R z\right), \alpha D\left(R x_{2 n}, S T x_{2 n+1}, R z\right)\right\} .
\end{array}
$$

Letting $n \rightarrow \infty$ and using the equations (3.1) and (3.2), we get

$$
\begin{aligned}
& D(u, u, R z) \leq \phi \max \{D(u, u, R z), D(u, u, R z), D(u, u, R z), \\
&\alpha D(u, u, R z), \alpha D(u, u, R z)\}
\end{aligned}
$$

Therefore, by Remark 2.2, $D(u, u, R z)=0$. Hence $u=R z$ for all $z \in O\left(R^{-1} A B, R^{-1} S T, x_{0}\right)$. So

$$
\begin{equation*}
u=R x_{0} . \tag{3.3}
\end{equation*}
$$

Step 2: Put $x=x_{2 n}, y=x_{0}$ and $z=x_{0}$ in the condition (3.iii), we get

$$
\begin{aligned}
& D\left(A B x_{2 n}, S T x_{0}, R x_{0}\right) \leq \phi \max \left\{D\left(R x_{2 n}, R x_{0}, R x_{0}\right)\right. \\
& D\left(A B x_{2 n}, R x_{2 n}, R x_{0}\right), D\left(S T x_{0}, R x_{0}, R x_{0}\right) \\
& \left.\alpha D\left(A B x_{2 n}, R x_{0}, R x_{0}\right), \alpha D\left(R x_{2 n}, S T x_{0}, R x_{0}\right)\right\} .
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using the equations (3.1), (3.2) and (3.3), we get

$$
D\left(u, S T x_{0}, u\right) \leq \phi\left(D\left(u, S T x_{0}, u\right)\right)
$$

Therefore, by Remark 2.2, $D\left(u, S T x_{0}, u\right)=0$, which gives $S T x_{0}=u$. Hence $R x_{0}=S T x_{0}=u$. Since $(S T, R)$ is weak-compatible, we get

$$
\begin{equation*}
S T u=R u \tag{3.4}
\end{equation*}
$$

Step 3: Put $x=x_{0}, y=x_{2 n+1}$ and $z=x_{0}$ in the condition (3.iii), we get

$$
\begin{aligned}
& D\left(A B x_{0}, S T x_{2 n+1}, R x_{0}\right) \leq \phi \max \left\{D\left(R x_{0}, R x_{2 n+1}, R x_{0}\right)\right. \\
& D\left(A B x_{0}, R x_{0}, R x_{0}\right), D\left(S T x_{2 n+1}, R x_{2 n+1}, R x_{0}\right) \\
& \left.\alpha D\left(A B x_{0}, R x_{2 n+1}, R x_{0}\right), \alpha D\left(R x_{0}, S T x_{2 n+1}, R x_{0}\right)\right\}
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using the equations (3.1), (3.2) and (3.3), we get $D\left(A B x_{0}, u, u\right) \leq \phi\left(D\left(A B x_{0}, u, u\right)\right)$. Therefore, by Remark 2.2, $D\left(A B x_{0}, u, u\right)=0$, which gives $A B x_{0}=u$. Hence $R x_{0}=A B x_{0}=u$. Since $(A B, R)$ is weak-compatible, we get $A u=R u$. Therefore, by the equation (3.4)) we have

$$
\begin{equation*}
A B u=R u=S T u . \tag{3.5}
\end{equation*}
$$

Step 4: Put $x=u, y=u$ and $z=x_{0}$ in the condition (3.iii), we get $D\left(A B u, S T u, R x_{0}\right) \leq \phi \max \left\{D\left(R u, R u, R x_{0}\right), D\left(A B u, R u, R x_{0}\right)\right.$,

$$
\begin{aligned}
& \quad D\left(S T u, R u, R x_{0}\right) \\
& \left.\alpha D\left(A B u, R u, R x_{0}\right), \alpha D\left(R u, S T u, R x_{0}\right)\right\} .
\end{aligned}
$$

Using the equation (3.5), we get

$$
D(A B u, A B u, u) \leq \phi(D(A B u, A B u, u))
$$

Therefore, by Remark $2.2, D(A B u, A B u, u)=0$, which gives $A B u=$ u. Therefore, $R u=S T u=A B u=u$, i.e., u is a common fixed point of $R, S T$ and $A B$.

Step 5: Put $x=x_{2 n}, y=T u$ and $z=x_{0}$ in the condition (3.iii), we get

$$
\begin{gathered}
D\left(A B x_{2 n}, S T(T u), R x_{0}\right) \leq \phi \max \left\{D\left(R x_{2 n}, R(T u), R x_{0}\right)\right. \\
D\left(A B x_{2 n}, R x_{2 n}, R x_{0}\right), D\left(S T x 0, R(T u), R x_{0}\right) \\
\left.\alpha D\left(A B x_{2 n}, R(T u), R x_{0}\right), \alpha D\left(R x_{2 n}, S T(T u), R x_{0}\right)\right\} .
\end{gathered}
$$

Since $S T=T S$ and $R T=T R$, we have

$$
\begin{gathered}
D\left(A B x_{2 n}, T(S T u), R x_{0}\right) \leq \phi \max \left\{D\left(R x_{2 n}, T(R u), R x_{0}\right)\right. \\
D\left(A B x_{2 n}, R x_{2 n}, R x_{0}\right), D\left(S T x_{0}, T(R u), R x_{0}\right) \\
\left.\alpha D\left(A B x_{2 n}, R(T u), R x_{0}\right), \alpha D\left(R x_{2 n}, T(S T u), R x_{0}\right)\right\} .
\end{gathered}
$$

Letting $n \rightarrow \infty$ and using the equations (3.1), (3.2) and (3.3), we get $D(u, T u, u) \leq \phi(D(u, T u, u))$, which gives $T u=u$. Now $S T u=u$ gives $S u=u$. Hence

$$
\begin{equation*}
S u=T u=R u=u=A B u=S T u . \tag{3.6}
\end{equation*}
$$

Step 6: Put $x=B u, y=x_{2 n+1}$ and $z=x_{0}$ in the condition (3.iii), we get

$$
\begin{aligned}
& D\left(A B(B u), S T x_{2 n+1}, R x_{0}\right) \leq \phi \max \left\{D\left(R(B u), R x_{2 n+1}, R x_{0}\right)\right. \\
& D\left(A B(B u), R x_{2 n+1}, R x_{0}\right), D\left(S T x_{2 n+1}, R(B u), R x_{0}\right) \\
& \left.\alpha D\left(A B(B u), R x_{2 n+1}, R x_{0}\right), \alpha D\left(R(B u), S T x_{2 n+1}, R x_{0}\right)\right\} .
\end{aligned}
$$

Since $A B=B A$ and $R B=B R$, we have

$$
\begin{aligned}
& D\left(B(A B u), S T x_{2 n+1}, R x_{0}\right) \leq \phi \max \left\{D\left(B(R u), R x_{2 n+1}, R x_{0}\right)\right. \\
& D\left(B(A B u), R x_{2 n+1}, R x_{0}\right), D\left(S T x_{2 n+1}, B(R u), R x_{0}\right) \\
& \left.\alpha D\left(B(A B u), R x_{2 n+1}, R x_{0}\right), \alpha D\left(B(R u), S T x_{2 n+1}, R x_{0}\right)\right\} .
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using the equations (3.1), (3.2) and (3.6), we get $D(B u, u, u) \leq \phi(D(B u, u, u))$, which gives $B u=u$. Now $A B u=u$ gives $A u=u$. Hence $A u=B u=S u=T u=R u=u$.

Step 7: (Uniqueness) Let u_{1} be another common fixed point of A, B, S, T and R. Then $R u_{1}=A u_{1}=B u_{1}=S u_{1}=T u_{1}=u_{1}$. Put $x=u_{1}, y=u_{1}$ and $z=x_{0}$ in the condition (3.iii), we get $D\left(u_{1}, u_{1}, u\right) \leq \phi D\left(u_{1}, u_{1}, u\right)$, which gives $u_{1}=u$.

Therefore, u is a unique common fixed point of A, B, S and T.
Corollary 3.2. Let A, B, S and T be four self-maps of a D metric space (X, D) satisfying:
(1) For some $x_{0} \in X$, the orbit $\left\{y_{n}\right\}=O\left(S T, A B, x_{0}\right)$ is bounded and complete.
(2) For $\phi \in \Phi$, some $\alpha \in\left[0, \frac{1}{3}\right]$, all $x, y \in X$ and $z \in O\left(A B, S T, x_{0}\right)$

$$
\begin{aligned}
D(A B x, S T y, z) \leq \phi \max \{D(x, y, z), D(A B x, x, z), D(S T y, y, z), \\
\alpha D(A B x, y, z), \alpha D(x, S T y, z)\} .
\end{aligned}
$$

(3) $A B=B A$ and $S T=T S$.

Then A, B, S and T have a unique common fixed point.
Proof. The result follows from Theorem 3.1 by taking $R=I$.
Corollary 3.3. Let A and B be two self-maps of a D-metric space (X, D) satisfying:
(1) For some $x_{0} \in X$ and some positive integers a and s, the orbit $\left\{y_{n}\right\}=O\left(S^{s}, A^{a}, x_{0}\right)$ is bounded and complete.
(2) For $\phi \in \Phi$, some $\alpha \in\left[0, \frac{1}{3}\right]$, all $x, y \in X$ and $z \in O\left(A^{a}, S^{s}, x_{0}\right)$

$$
\begin{aligned}
D\left(A^{a} x, S^{s} y, z\right) \leq \phi \max \left\{D(x, y, z), D\left(A^{a} x, x, z\right), D\left(S^{s} y, y, z\right),\right. \\
\left.\alpha D\left(A^{a} x, y, z\right), \alpha D\left(x, S^{s} y, z\right)\right\} .
\end{aligned}
$$

Then A and S have a unique common fixed point.
Proof. In Corollary 3.2, if we take $B=A^{a-1}$ and $T=S^{s-1}$, then A^{a-1}, A, S^{s-1} and S have a unique common fixed point, i.e., A and S have a unique common fixed point.

Corollary 3.4. Let A, S and R be three self-maps of a D-metric space (X, D) satisfying:
(1) $A(X) \subset R(X)$ and $S(X) \subset R(X)$.
(2) The pairs (A, R) and (S, R) are weak-compatible.
(3) For some $x_{0} \in X$, the orbit $\left\{y_{n}\right\}=O\left(S R^{-1}, A R^{-1}, A x_{0}\right)$ is bounded and complete.
(4) For some $\phi \in \Phi$, some $\alpha \in\left[0, \frac{1}{3}\right], z \in O\left(R^{-1} A, R^{-1} S, x_{0}\right)$, and all $x, y \in X$

$$
\begin{array}{r}
D(A x, S y, R z) \leq \phi \max \{D(R x, R y, R z), D(A x, R x, R z) \\
D(S y, R y, R z), \alpha D(A x, R y, z), \alpha D(R x, S y, R z)\} .
\end{array}
$$

Then A, S and R have a unique common fixed point.
Proof. The result follows from Corollary 3.2 by taking $B=T=I$.

Corollary 3.5. Let A and R be two self-maps of a D-metric space (X, D) satisfying:
(1) $A(X) \in R(X)$.
(2) The pair (A, R) is weak-compatible.
(3) For some $x_{0} \in X$, the orbit $\left\{y_{n}\right\}=O\left(A R^{-1}, A x_{0}\right)$ is bounded and complete.
(4) For $\phi \in \Phi$, some $\alpha \in\left[0, \frac{1}{3}\right]$, all $x, y \in X$ and $z \in O\left(R^{-1} A, x_{0}\right)$

$$
\begin{array}{r}
D(A x, A y, R z) \leq \phi \max \{D(R x, R y, R z), D(A x, R x, R z) \\
D(A y, R y, R z), \alpha D(A x, R y, z), \alpha D(R x, A y, R z)\}
\end{array}
$$

Then A and R have a unique common fixed point.
Proof. The result follows from Corollary 3.4 by taking $S=A=I$.

Corollary 3.6. Let A and S be two self-maps of a D-metric space (X, D) such that for some $x_{0} \in X$ the orbit $O\left(A, S, x_{0}\right)$ is bounded and complete, and for some $\phi \in \Phi$, some $\alpha \in\left[0, \frac{1}{3}\right]$, all $x, y \in X$ and $z \in O\left(A, S, x_{0}\right)$,

$$
\begin{gathered}
D(A x, S y, z) \leq \phi \max \{D(x, y, z), D(A x, x, z), D(S y, y, z), \\
\alpha D(A x, y, z), \alpha D(x, S y, z)\}
\end{gathered}
$$

Then A and S have a unique common fixed point.
Proof. The result follows from Corollary 3.4 by taking $R=I$, and the orbit $O\left(S R^{-1}, A R^{-1}, A x_{0}\right)$ becomes $O\left(S, A, A x_{0}\right)$ which is contained in $O\left(A, S, x_{0}\right)$.

Remark 3.1. The above corollary improves Theorem 2.1 of Dhage [5] in respect of restricting the domain and of completeness and boundedness. Thus Theorem 3.1 is a generalization of the result of Dhage [5] from two self-maps to four self-maps.

Corollary 3.7. Let A be a self-map of a D-metric space (X, D) such that for some $x_{0} \in X$, the orbit $O\left(A, x_{0}\right)$ is bounded and complete, and for some $\phi \in \Phi$, all $x, y \in X$ and all $z \in O\left(A, x_{0}\right)$,

$$
\begin{gathered}
D(A x, A y, z) \leq \phi \max \{D(x, y, z), D(A x, x, z), D(A y, y, z), \\
\alpha D(x, A y, z), \alpha D(A x, y, z)\} .
\end{gathered}
$$

Then A has a unique fixed point.
Proof. The result follows from Corollary 3.6 by taking $S=A$ and the orbit $O\left(S, A, x_{0}\right)=O\left(A, x_{0}\right)$.

References

1. Y.J. Cho, Fixed point in fuzzy metric space, J. Fuzzy Math. 5 (1997), 949-962.
2. B.C. Dhage, Generalized metric spaces and mapping with fixed points, Bull. Cal. Math. Soc. 84 (1992), 329-336.
3.__ A common fixed point principle in D-metric spaces, Bull. Cal. Math. Soc. 91 (1999), 475-480.
3. , Some results on common fixed point I, Indian J. Pure Appl. Math. 30 (1999), 827-837.
4. B.C. Dhage, A.M. Pathan and B.E. Rhoades, A general existence principal for fixed point theorem in D-metric space, Internat. J. Math. Math. Sci. 23 (2000), 441-448.
5. G. Jungck, Compatible mappings and common fixed point, Internat. J. Math. Math. Sci. 9 (1986), 771-779.
6. B.E. Rhoades, A fixed point theorem for generalized metric space, Internat. J. Math. Math. Sci. 19 (1996), 457-460.
7. S. Sessa, On a weak commutative condition in fixed point consideration, Publ. Inst. Math (Beogard) 32 (1982), 146-153.
8. T. Veerapandi and C. Rao, Fixed point theorem of some multivalued mapping in D-metric space, Bull. Cal. Math. Soc. 87 (1995), 549-556.

*

School of Studies in Mathematics
Vikram University
UJjain-456010(M. P.), India
**
M. B. Khalsa College

Rajmohalla, Indore (M. P.)
India
E-mail: shobajain1@yahoo.com

