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COMMON FIXED POINTS OF WEAK–COMPATIBLE

MAPS ON D–METRIC SPACE

Bijendra Singh* and Shobha Jain**

Abstract. In [4], Dhage proved a result for common fixed point of

two self-maps satisfying a contractive condition in D-metric spaces.

This note proves a fixed point theorem for five self-maps under weak-

compatibility in D-metric space which improves and generalizes the

above mentioned result.

1. Introduction

Dhage [2] introduced D-metric space and proved the existence of

unique fixed point of a self-map satisfying a contractive condition.

Rhoades [7] generalized Dhage’s contractive condition by increasing

the number of factors and proved the existence of unique fixed point of

a self-map in D-metric space. Recently, Dhage [4] extended Rhoades’

above contractive condition to two maps. At the same time, Dhage

[3] proved the existence of a unique common fixed point of a pair of

self-maps under weak-compatibility.

Sessa [8] initiated the tradition of improving the commutative con-

dition in fixed point theory by introducing the notion of weakly com-

muting mappings. Jungck [6] introduced a more general concept

known as compatible mapping in metric spaces. Recently, Cho [1]

proved the existence of a unique common fixed point of five self-maps

using α-compatibility.

Received by the editors on April 04, 2004.
2000 Mathematics Subject Classifications: Primary 54H25, 47H10.

Key words and phrases: D-metric space, common fixed point, orbit, bounded

orbit, complete orbit, weak-compatible.

111



112 B. SINGH AND S. JAIN

In this paper, we prove the existence of unique common fixed point

of five self-maps in a D-metric space under weak-compatibility using

the contractive condition of Dhage [4]. This result generalizes and

improves the result of Dhage [4] by increasing the number of self-maps

from two to five and restricting the domain and that of boundedness

and completeness to some orbits only.

2. Preliminaries

Definition 2.1. Let X be a non-empty set. A generalized metric

(or D-metric) on X is a function from X × X × X to R
+ (the set of

non-negative real numbers) satisfying the followings:

(1) D(x, y, z) = 0 if and only if x = y = z,

(2) D(x, y, z) = D(p(x, y, z)) for all x, y, x ∈ X and each permu-

tation p(x, y, z) of x, y, z,

(3) D(x, y, z) ≤ D(x, y, w)+D(x,w, z)+D(w, y, z) for all x, y, z,

w ∈ X.

The pair (X,D) is called a D-metric space.

Definition 2.2. A sequence {xn} of points in a D-metric space

(X,D) is said to be D-convergent to a point x ∈ X if for each ǫ > 0,

there exists an n0 ∈ N such that D(xm, xn, x) < ǫ for all m,n > n0.

The sequence {xn} is said to be D-Cauchy if for each ǫ > 0, there

exists an n0 ∈ N such that D(xm, xn, xp) < ǫ for all m,n, p > n0. A

D-metric space (X,D) is said to be complete if every Cauchy sequence

converges to some point of X.

Definition 2.3. Let T be a multivalued map on D-metric space

(X,D). Let x0 ∈ X be arbitrary. A sequence {xn} in X is said to

be an orbit of T at x0 denoted by O(T, x0) if xn−1 ∈ Tn−1(x0) for

all n ∈ N. If T is a single-valued self-map on X then for x0 ∈ X,

let x1 = Tx0, x2 = Tx1 = T 2x0, · · · , xn−1 = Tn−1x0. Then the

sequence {xn} is called the orbit of T at the point x0 and is denoted
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by O(T, x0).

Definition 2.4. Let (X,D) be a D-metric space. Let S and T be

two set valued mappings from X into 2X . For x0 ∈ X, let x1 ∈ Sx0,

x2 ∈ Tx1 ⊂ TSx0, x3 ∈ Sx2 ⊂ STSx0, etc. Then the sequence

{x0, x1, x2, · · · } = {xn} is called an orbit of S and T at the point

x0 and is denoted by O(S, T, x0). An orbit O(S, T, x0) is said to be

complete if every Cauchy sequence converges to an element of X. An

orbit O(S, T, x0) is said to be bounded if there exists M > 0 such that

D(u, v, w)leM for all u, v, w ∈ O(S, T, x0) and the number M is said

to be a bound of the orbit O(S, T, x0).

Definition 2.5. A pair (S, T ) of self-maps on a D-metric space

(X,D) is said to be weak-compatible if Sy = Ty for some y ∈ X

implies TSy = STy.

We require the followings to prove the main result.

Proposition 2.1. Let P,Q and R be three self-maps on a D-

metric space (X,D) such that P (X) ⊂ R(X) and Q(X) ⊂ R(X).

For some x0 ∈ X, define sequences {xn} and {yn} in X as follows:

Px2n = Rx2n+1 = y2n+1 and Qx2n+1 = Rx2n+2 = y2n+2 for n =

0, 1, 2, · · · . Then

{x0, x1, x2, · · · } = {xn} = O(R−1P,R−1Q,x0)

{y1, y2, · · · } = {yn} = O(QR−1 , PR−1, Px0).

Proof. We have

y1 = Px0 = Rx1 & y2 = Qx1 = Rx2

y3 = Px2 = Rx3 & y4 = Qx3 = Rx4

... &
...

Therefore, x1 ∈ R−1Px0, x2 ∈ R−1Qx1 ⊂ (R−1Q)(R−1P )x0, and

x3 ∈ R−1Px2 ⊂ (R−1P )(R−1Q)(R−1P )x0. Hence {x0, x1, x2, · · · } =
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{xn} = O(R−1P,R−1Q,x0). Also y1 = Px0, y2 = Qx1Q(R−1P )x0 =

(QR−1)Px0, y3 = Px2(PR−1)(QR−1)Px0. Hence {y1, y2, y3, · · · } =

{yn} = O(QR−1, PR−1, Px0). �

Note that if AB(X) ⊂ R(X) and ST (X) ⊂ R(X) then from Propo-

sition 2.1,

{xn} = O(R−1AB,R−1ST, x0),

{yn} = O(STR−1, ABR−1 , ABx0).

Lemma 2.2. (Dhage [5]) Let {xn} ⊂ X be bounded with D-bound

M satisfying

D(xn , xn+1, xm) ≤ fn(M)

for all n ∈ N and all m > n + 1, where f : R
+ → R

+ satisfying
∑

∞

n=1
fn(t) < ∞ for each t ∈ R

+. Then {xn} is a D-Cauchy sequence.

Let Φ denote the set of functions φ : R
+ → R

+ satisfying (1) φ is

non-decreasing, (2) φ(t) < t for t > 0, and (3)
∑

∞

n=1
φn(t) < ∞.

Lemma 2.3. Let P,Q and R be three self-maps of a D-metric space

(X,D) satisfying (i) P (X) ⊂ R(X) and Q(X) ⊂ R(X), (ii) for some

x0 ∈ X an orbit O(QR−1 , PR−1, Px0) is bounded, and (iii) for some

φ ∈ Φ, some α ∈ [0, 1

3
] and x, y, z ∈ O(R−1P,R−1Q,x0)

D(Px,Qy,Rz) ≤φ max{D(Rx,Ry,Rz),D(Px,Rx,Rz),

D(Qy,Ry,Rz), αD(Px,Ry,Rz), αD(Rx,Qy,Rz)}.

Then {yn} is a D-Cauchy sequence.

Proof. Let x0 ∈ X. As seen above we can construct sequences

{xn} and {yn} in X such that Px2n = Rx2n+1 = y2n+1 and Qx2n−1 =

Rx2n = y2n for all n. Thus the sequence {yn} ⊂ O(QR−1 , PR−1, Px0)

which is bounded. Let M be a bound of it then D(x, y, z) ≤ M for
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all x, y, z ∈ O(QR−1 , PR−1, Px0). We show, by induction on n, that

for m ≥ n + 1

(2.1) D(yn , yn+1, ym) ≤ φn(M)

for all n. Putting x = x0, y = x1 and z = xm in the condition (iii),

we get

D(y1 , y2, ym) ≤ φ max{D(y0 , y1, ym),D(y0 , y1, ym),D(y1 , y2, ym),

αD(y1 , y1, ym), αD(y0 , y2, ym)} ≤ φ(M)

since each factor is less than M . Hence (2.1) holds for n = 1. Again

assuming that (2.1) holds for n ≤ p(= 2k, say), we will show that

(2.1) holds for n = p + 1(= 2k + 1). Putting x = x2k, y = x2k+1 and

z = xm in the condition (iii), we get

D(y2k+1, y2k+2, ym) ≤φ max{D(y2k , y2k+1, ym),D(y2k , y2k+1, ym),

D(y2k+1, y2k+2, ym,αD(y2k+1, y2k+1, ym, αD(y2k , y2k+2, ym)}

= φ max{D(y2k, y2k+1, ym), αD(y2k+1 , y2k+1, ym),

αD(y2k, y2k+2, ym)},

since D(y2k+1, y2k+2, ym) can not be maximum as for t > 0 it will

give t < t which is a contradiction. If t = 0, then {yn} is a constant

sequence form n = 2k onwards.

Case 1:

D(y2k+1, y2k+2, ym) ≤ φ{D(y2k, y2k+1, ym)}

≤ φφ2k(M) = φ2k+1(M).

Case 2:

D(y2k+1, y2k+2, ym) ≤ φ{αD(y2k+1, y2k+1, ym)}

≤ φ(α{D(y2k+1 , y2k+1, y2k) + D(y2k+1, y2k, ym)

+ D(y2k , y2k+1, ym)})

≤ φ(3αφ2k(M)) ≤ φ2k+1(M).
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Case 3:

D(y2k+1, y2k+2, ym) ≤ φ(αD(y2k , y2k+2, ym))

≤ φ(α{D(y2k , y2k+2, y2k+1) + D(y2k , y2k+1, ym)

+ D(y2k+1, y2k+2, ym)})

= φ(α{D(y2k , y2k+1, y2k+2) + D(y2k , y2k+1, ym)

+ D(y2k+1, y2k+2, ym)})

≤ φ(2αφ2k(M) + αD(y2k+1, y2k+2, ym))

< 2αφ2k+1(M) + αD(y2k+1, y2k+2, ym)

implies (1 − α)D(y2k+1, y2k+2, ym) ≤ 2αφ2k+1(M). Since α ≤ 1

3
,

2α
1−α

≤ 1. So we get D(y2k+1, y2k+2, ym) ≤ φ2k+1(M), which is (2.1)

for n = 2k + 1. Hence the equation (2.1) holds for n = 2k + 1, if it is

true for n ≤ 2k. Similarly, we can show that the equation (2.1) holds

for n = 2k + 2, if it is true for n ≤ 2k + 1. Therefore, by induction

on n, the equation (2.1) holds for all n. By Lemma 2.2, {yn} is a

D-Cauchy sequence in O(QR−1 , PR−1, Px0). �

Remark 2.1. If we substitute P = AB and Q = ST , then (iii)

becomes

D(ABx, STy,Rz) ≤ φ max{D(Rx,Ry,Rz), D(ABx,Rx,Rz),

D(STy,Ry,Rz),αD(ABx,Ry,Rz), αD(Rx, STy,Rz)}

for some φ ∈ Φ, some α ∈ [0, 1

3
], x, y, z ∈ O(R−1AB,R−1ST, x0), and

{yn} = O(STR−1, ABR−1, ABx0) is a D-Cauchy sequence.

Remark 2.2. If for some x, y, z ∈ X,D(x, y, z) ≤ φ(D(x, y, z)),

then x = y = z. If D(x, y, z) > 0, then

D(x, y, z) ≤ φ(D(x, y, z)) < D(x, y, z),

i.e., D(x, y, z) < D(x, y, z), which is a contradiction.
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Theorem 2.1. ([4, Theorem 2.1] Let A,B : X → X be self-maps

and let X be orbitally bounded and orbitally complete D metric space

and suppose that

D(Ax,By, z) ≤ φ max{D(x, y, z),D(x, Ax, z),D(y,By, z),

αD(x,By, z), αD(Ax, y, z)}

for all x, y ∈ X, z ∈ O(A,B, x) ∪ O(B,A, y), some φ ∈ Φ and α ∈

[0, 1

3
]. Then A and B have a unique common fixed point in X.

3. Main results

The following theorem generalizes this for five self-maps. It fur-

ther improves it by restricting the domain and of boundedness and

completeness to some orbits only.

Theorem 3.1. Let A,B, S, T and R be five self-maps of a D-

metric space (X,D) satisfying:

(3.i) AB(X) ⊂ R(X) and ST (X) ⊂ R(X).

(3.ii) For some x0 ∈ X, the orbit O(STR−1, ABR−1, ABx0) is

bounded and complete.

(3.iii) For some φ ∈ Φ, z ∈ O(R−1AB,R−1ST, x0), some α[0, 1

3
],

and all x, y ∈ X

D(ABx, STy,Rz) ≤ φ max{D(Rx,Ry,Rz),D(ABx,Rx,Rz),

D(STy,Ry,Rz),αD(ABx,Ry, z), αD(Rx, STy,Rz)}.

(3.iv) The pairs (AB,R) and T (ST,R) are weak compatible.

(3.v) AB = BA,RB = BR,ST = TS,RT = TR.

Then A,B, S, T and R have a unique common fixed point.

Proof. For some x0 ∈ X, construct sequences {xn} and {yn} in X

such that ABx2n = Rx2n+1 = y2n+1, STx2n+1 = Rx2n+2 = y2n+2 for
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all n = 0, 1, 2, ·. Substituting P = AB and Q = ST in Lemma 2.3,

then by Remark 2.2, {yn} is D-Cauchy in O(STR−1, ABR−1, ABx0),

which is complete. Therefore, {yn} converges to some u ∈ X. Also its

subsequences {ABx2n}, {STx2n+1}, {Rx2n} and {Rx2n+1} also con-

verge to u. Hence

{ABx2n} → u & {STx2n+1} → u(3.1)

{Rx2n} → u & {Rx2n+1} → u.(3.2)

Step 1: Put x = x2n and y = x2n+1 in the condition (3.iii), we get

D(ABx2n , STx2n+1, Rz) ≤ φ max{D(Rx2n , Rx2n+1, Rz),

D(ABx2n , Rx2n, Rz),D(STx2n+1, Rx2n+1, Rz),

αD(ABx2n , Rx2n+1, Rz),αD(Rx2n , STx2n+1, Rz)}.

Letting n → ∞ and using the equations (3.1) and (3.2), we get

D(u, u,Rz) ≤ φ max{D(u, u,Rz),D(u, u,Rz),D(u, u,Rz),

αD(u, u,Rz), αD(u, u,Rz)}.

Therefore, by Remark 2.2, D(u, u,Rz) = 0. Hence u = Rz for all

z ∈ O(R−1AB,R−1ST, x0). So

(3.3) u = Rx0.

Step 2: Put x = x2n, y = x0 and z = x0 in the condition (3.iii), we

get

D(ABx2n , STx0, Rx0) ≤ φ max{D(Rx2n , Rx0, Rx0),

D(ABx2n , Rx2n, Rx0),D(STx0, Rx0 , Rx0),

αD(ABx2n , Rx0, Rx0),αD(Rx2n , STx0, Rx0)}.
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Letting n → ∞ and using the equations (3.1), (3.2) and (3.3), we get

D(u, STx0, u) ≤ φ(D(u, STx0, u)).

Therefore, by Remark 2.2, D(u, STx0, u) = 0, which gives STx0 = u.

Hence Rx0 = STx0 = u. Since (ST,R) is weak-compatible, we get

(3.4) STu = Ru

Step 3: Put x = x0, y = x2n+1 and z = x0 in the condition (3.iii),

we get

D(ABx0 , STx2n+1, Rx0) ≤ φ max{D(Rx0 , Rx2n+1, Rx0),

D(ABx0 , Rx0, Rx0),D(STx2n+1, Rx2n+1, Rx0),

αD(ABx0 , Rx2n+1, Rx0),αD(Rx0 , STx2n+1, Rx0)}.

Letting n → ∞ and using the equations (3.1), (3.2) and (3.3), we

get D(ABx0 , u, u) ≤ φ(D(ABx0 , u, u)). Therefore, by Remark 2.2,

D(ABx0 , u, u) = 0, which gives ABx0 = u. Hence Rx0 = ABx0 = u.

Since (AB,R) is weak-compatible, we get Au = Ru. Therefore, by

the equation (3.4)) we have

(3.5) ABu = Ru = STu.

Step 4: Put x = u, y = u and z = x0 in the condition (3.iii), we get

D(ABu, STu,Rx0) ≤ φ max{D(Ru,Ru,Rx0),D(ABu,Ru,Rx0),

D(STu,Ru,Rx0),

αD(ABu,Ru,Rx0), αD(Ru, STu,Rx0)}.

Using the equation (3.5), we get

D(ABu,ABu, u) ≤ φ(D(ABu,ABu, u)).
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Therefore, by Remark 2.2, D(ABu,ABu, u) = 0, which gives ABu =

u. Therefore, Ru = STu = ABu = u, i.e., u is a common fixed point

of R,ST and AB.

Step 5: Put x = x2n, y = Tu and z = x0 in the condition (3.iii),

we get

D(ABx2n , ST (Tu), Rx0) ≤ φ max{D(Rx2n , R(Tu), Rx0),

D(ABx2n , Rx2n, Rx0),D(STx0, R(Tu), Rx0),

αD(ABx2n , R(Tu), Rx0),αD(Rx2n , ST (Tu), Rx0)}.

Since ST = TS and RT = TR, we have

D(ABx2n , T (STu), Rx0) ≤ φ max{D(Rx2n , T (Ru), Rx0),

D(ABx2n , Rx2n, Rx0),D(STx0, T (Ru), Rx0),

αD(ABx2n , R(Tu), Rx0),αD(Rx2n , T (STu), Rx0)}.

Letting n → ∞ and using the equations (3.1), (3.2) and (3.3), we get

D(u, Tu, u) ≤ φ(D(u, Tu, u)), which gives Tu = u. Now STu = u

gives Su = u. Hence

(3.6) Su = Tu = Ru = u = ABu = STu.

Step 6: Put x = Bu, y = x2n+1 and z = x0 in the condition (3.iii),

we get

D(AB(Bu), STx2n+1 , Rx0) ≤ φ max{D(R(Bu), Rx2n+1 , Rx0),

D(AB(Bu), Rx2n+1 , Rx0),D(STx2n+1, R(Bu), Rx0),

αD(AB(Bu), Rx2n+1 , Rx0),αD(R(Bu), STx2n+1, Rx0)}.

Since AB = BA and RB = BR, we have

D(B(ABu), STx2n+1 , Rx0) ≤ φ max{D(B(Ru), Rx2n+1 , Rx0),

D(B(ABu), Rx2n+1 , Rx0),D(STx2n+1, B(Ru), Rx0),

αD(B(ABu), Rx2n+1 , Rx0),αD(B(Ru), STx2n+1, Rx0)}.
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Letting n → ∞ and using the equations (3.1), (3.2) and (3.6), we get

D(Bu, u, u) ≤ φ(D(Bu, u, u)), which gives Bu = u. Now ABu = u

gives Au = u. Hence Au = Bu = Su = Tu = Ru = u.

Step 7: (Uniqueness) Let u1 be another common fixed point of

A,B, S, T and R. Then Ru1 = Au1 = Bu1 = Su1 = Tu1 = u1.

Put x = u1, y = u1 and z = x0 in the condition (3.iii), we get

D(u1, u1, u) ≤ φD(u1, u1, u), which gives u1 = u.

Therefore, u is a unique common fixed point of A,B, S and T . �

Corollary 3.2. Let A,B, S and T be four self-maps of a D-

metric space (X,D) satisfying:

(1) For some x0 ∈ X, the orbit {yn} = O(ST,AB, x0) is bounded

and complete.

(2) For φ ∈ Φ, some α ∈ [0, 1

3
], all x, y ∈ X and z ∈ O(AB,ST, x0)

D(ABx, STy, z) ≤ φ max{D(x, y, z),D(ABx, x, z),D(STy, y, z),

αD(ABx, y, z), αD(x, STy, z)}.

(3) AB = BA and ST = TS.

Then A,B, S and T have a unique common fixed point.

Proof. The result follows from Theorem 3.1 by taking R = I. �

Corollary 3.3. Let A and B be two self-maps of a D-metric

space (X,D) satisfying:

(1) For some x0 ∈ X and some positive integers a and s, the orbit

{yn} = O(Ss, Aa, x0) is bounded and complete.

(2) For φ ∈ Φ, some α ∈ [0, 1

3
], all x, y ∈ X and z ∈ O(Aa, Ss, x0)

D(Aax, Ssy, z) ≤ φ max{D(x, y, z),D(Aax, x, z),D(Ssy, y, z),

αD(Aax, y, z), αD(x, Ssy, z)}.
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Then A and S have a unique common fixed point.

Proof. In Corollary 3.2, if we take B = Aa−1 and T = Ss−1, then

Aa−1, A, Ss−1 and S have a unique common fixed point, i.e., A and

S have a unique common fixed point. �

Corollary 3.4. Let A,S and R be three self-maps of a D-metric

space (X,D) satisfying:

(1) A(X) ⊂ R(X) and S(X) ⊂ R(X).

(2) The pairs (A,R) and (S,R) are weak-compatible.

(3) For some x0 ∈ X, the orbit {yn} = O(SR−1, AR−1, Ax0) is

bounded and complete.

(4) For some φ ∈ Φ, some α ∈ [0, 1

3
], z ∈ O(R−1A,R−1S, x0), and

all x, y ∈ X

D(Ax, Sy,Rz) ≤ φ max{D(Rx,Ry,Rz),D(Ax,Rx, Rz),

D(Sy,Ry,Rz),αD(Ax,Ry, z), αD(Rx, Sy,Rz)}.

Then A,S and R have a unique common fixed point.

Proof. The result follows from Corollary 3.2 by taking B = T = I.

�

Corollary 3.5. Let A and R be two self-maps of a D-metric

space (X,D) satisfying:

(1) A(X) ∈ R(X).

(2) The pair (A,R) is weak-compatible.

(3) For some x0 ∈ X, the orbit {yn} = O(AR−1 , Ax0) is bounded

and complete.

(4) For φ ∈ Φ, some α ∈ [0, 1

3
], all x, y ∈ X and z ∈ O(R−1A, x0)

D(Ax,Ay,Rz) ≤ φ max{D(Rx,Ry,Rz),D(Ax,Rx, Rz),

D(Ay,Ry,Rz),αD(Ax,Ry, z), αD(Rx, Ay,Rz)}.
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Then A and R have a unique common fixed point.

Proof. The result follows from Corollary 3.4 by taking S = A = I.

�

Corollary 3.6. Let A and S be two self-maps of a D-metric

space (X,D) such that for some x0 ∈ X the orbit O(A,S, x0) is

bounded and complete, and for some φ ∈ Φ, some α ∈ [0, 1

3
], all

x, y ∈ X and z ∈ O(A,S, x0),

D(Ax, Sy, z) ≤ φ max{D(x, y, z),D(Ax, x, z),D(Sy, y, z),

αD(Ax, y, z), αD(x, Sy, z)}.

Then A and S have a unique common fixed point.

Proof. The result follows from Corollary 3.4 by taking R = I,

and the orbit O(SR−1, AR−1 , Ax0) becomes O(S,A,Ax0) which is

contained in O(A,S, x0). �

Remark 3.1. The above corollary improves Theorem 2.1 of Dhage

[5] in respect of restricting the domain and of completeness and bound-

edness. Thus Theorem 3.1 is a generalization of the result of Dhage

[5] from two self-maps to four self-maps.

Corollary 3.7. Let A be a self-map of a D-metric space (X,D)

such that for some x0 ∈ X, the orbit O(A, x0) is bounded and com-

plete, and for some φ ∈ Φ, all x, y ∈ X and all z ∈ O(A, x0),

D(Ax,Ay, z) ≤ φ max{D(x, y, z),D(Ax, x, z),D(Ay, y, z),

αD(x,Ay, z), αD(Ax, y, z)}.

Then A has a unique fixed point.

Proof. The result follows from Corollary 3.6 by taking S = A and

the orbit O(S,A, x0) = O(A, x0). �
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