확산 텐서 영상에서 확산 경사자장의 방향수에 따른 잡음 분석

The Noise Performance of Diffusion Tensor Image with Different Gradient Schemes

  • 이영주 (경북대 대학원 의용생체공학과) ;
  • 장용민 (경북대 대학원 의용생체공학과, 경북대 의대 진단방사선과학교실) ;
  • 김용선 (경북대 의대 진단방사선과학교실)
  • Lee Young-Joo (Department of Medical and Biological Engineering, Graduate School, Kyungpook National University) ;
  • Chang Yongmin (Department of Medical and Biological Engineering, Graduate School, Kyungpook National University, Department of Diagnostic Radiology, College of Medicine, Kyungpook National University) ;
  • Kim Yong-Sun (Department of Diagnostic Radiology, College of Medicine, Kyungpook National University)
  • 발행 : 2004.12.01

초록

확산 텐서 영상은 조직 내 물 분자의 확산 현상을 이용하는 영상기법으로 조직 구조의 비등방성 및 방향성에 대한 정보를 제공해준다. 근육이나 뇌백질과 같은 조직에서는 신경다발들이 일정한 방향성을 가지고 있어서 그 방향에 대해서 확산이 잘 일어난다. 이러한 확산을 비등방성이라 한다. 확산의 비등방성의 정도는 RA, VR 그리고 FA와 같은 지표를 이용하여 나타낸다. 본 연구에서는 다른 확산 경사자장의 수에 대하여 각각 FA 영상을 만들었다. FA영상에 관심영역을 설정하고 FA 평균값 및 FA의 표준편차를 계산하였다. 그 결과, 경사자장의 방향수가 증가함에 따라서 FA값 및 FA의 표준편차가 감소하였다. 또한 ADC 측정 오차에 대한 표준 오차도 확산 경사자장의 방향수가 증가함에 따라서 감소하였다. 결론적으로 경사자장의 방향수에 따라서 잡음의 영향이 다르며, 더 많은 방향수를 사용하는 것이 FA영상의 질을 향상시킨다는 것을 알 수 있었다. 그러나 영상획득 시간과 FA의 표준편차 등을 고려했을 때. 임상적으로 사용될 확산 텐서영상의 방향수는 23개 정도가 적당하다고 결론 내릴 수 있다.

Diffusion tensor image(DTI) exploits the random diffusional motion of water molecules. This method is useful for the characterization of the architecture of tissues. In some tissues, such as muscle or cerebral white matter, cellular arrangement shows a strongly preferred direction of water diffusion, i.e., the diffusion is anisotropic. The degree of anisotropy is often represented using diffusion anisotropy indices (relative anisotropy(RA), fractional anisotropy(FA), volume ratio(VR)). In this study, FA images were obtained using different gradient schemes(N=6, 11, 23, 35. 47). Mean values and the standard deviations of FA were then measured at several anatomic locations for each scheme. The results showed that both mean values and the standard deviations of FA were decreased as the number of gradient directions were increased. Also, the standard error of ADC measurement decreased as the number of diffusion gradient directions increased. In conclusion, different gradient schemes showed a significantly different noise performance and the schem with more gradient directions clearly improved the quality of the FA images. But considering acquisition time of image and standard deviation of FA, 23 gradient directions is clinically optimal.

키워드

참고문헌

  1. D.L Bihan, J.F. Mangin, C. Poupon, C.A. Clark, S. Pappata, N. MoIko and H. Chabriat, 'Diffusion tensor imaging : concepts and applications', J. Magn. Reson. Imaging., vol 13, pp. 534-546, 2001 https://doi.org/10.1002/jmri.1076
  2. P.J. Basser and C. Pierpaoli , 'Microstructural and physiological features of tissues elucidated quantitative-diffusion-tensor MRI', J. Magn. Reson., vol. 111, pp. 209-219, 1996 https://doi.org/10.1006/jmrb.1996.0086
  3. D.K. Jones, M.A. Horsfield, and A. Simmons, 'Optimal strategies for measuring in anisotropic systems by magnetic resonance imaging', Magn. Reson. Med., vol. 42, pp. 515-525, 1999 https://doi.org/10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
  4. P.J. Basser J., Mattiello and D.L Bihan, 'Estimation of the effective self-diffusion tensor from NMR spin echo', J. Magn. Reson., vol. 103, pp. 247-254, 1994. https://doi.org/10.1006/jmrb.1994.1037
  5. P.J. Basser, J. Mattiello and D.L. Bihan, 'MR diffusion tensor spectroscopy and imaging' , Biophys. J., vol. 66, pp. 259-267, 1994 https://doi.org/10.1016/S0006-3495(94)80775-1
  6. C. Pierpaoli and P.J. Basser, 'Toward a quantitative assessment of diffusion anisotrpy', Magn. Reson. Med., vol. 36 pp. 893-906, 1996 https://doi.org/10.1002/mrm.1910360612
  7. C. Pierpaoli, P. Jezzard, P.J. Basser, A. Barnett and G. DiChiro, 'Diffusion tensor MR imaging of the human brain', Radiology, vol. 201, pp. 637-648, 1996 https://doi.org/10.1148/radiology.201.3.8939209
  8. K.M. Hasan, P.J. Basser, D.L.Parker and A.L. Alexander, 'Analytical computation of the eigenvalues and eigenvectors in DT-MRI', J. Magn. Reson., vol. 41, pp. 41-47, 2001
  9. N.G. Papadakis, D. Xing, C.L. Huang, L.D. Hall and tT.A. Carpenter, 'A comparatiνe study of acquisition schemes for diffusion tensor imaging using MRI', J. Mag. Reson., vol. 137, pp 67-82, 1999 https://doi.org/10.1006/jmre.1998.1673
  10. C.F. Westin, S.E. Maier, H. Mamata, A. Nabavi, F.A. Jolesz and R. Kikinis, 'Processing and visualization for diffusion tensor MRI' , Med. Image Analysis, vol. 6, pp. 93-108, 2002 https://doi.org/10.1016/S1361-8415(02)00053-1
  11. P.R. Bevington and D.K. Robinson, Data reduction and error analysis for the physical sciences, McGraw-Hill, 1992
  12. K.M. Hasan, D.L. Parker and A.L. Alexander, 'Comparison of gradient encoding schemes for diffusion- tensor MRI', J. Magn. Reson. Imaging, vol. 13, pp. 769-780, 2001 https://doi.org/10.1002/jmri.1107
  13. Y. Masutani, S. Aoki, O. Abe, N. Hayashi and K. Otomo, 'MR diffusion tensor imaging : recent advance and new techniques for diffusion tensor visualization', European J. Radiology, vol. 46, pp. 53-66, 2003 https://doi.org/10.1016/S0720-048X(02)00328-5
  14. R.V. Mulkern, H. Gudbjartsson, C.F. Westin, H.P. Zengingonul, W. Gartner, C.R. Guttmann, R.L. Robertson, W. Kyriakos, R. Schwartz, D. Holtzman, F.A. Jolesz and S.E. Maier, 'Multi-component apparent diffusion coefficients in human brain' , NMR Biemed., vol. 12, pp. 51-62, 1999 https://doi.org/10.1002/(SICI)1099-1492(199902)12:1<51::AID-NBM546>3.0.CO;2-E
  15. J.G. Pipe, V.G. Farthing and K.P., Forbes, 'Multishot diffusion-weighted FSE using PROPELLER MRI' , Mag. Reson. Med., vol. 47, pp. 42-52, 2002 https://doi.org/10.1002/mrm.10014