An Algorithm of Short-Term Load Forecasting

단기수요예측 알고리즘

  • 송경빈 (숭실대학교 공과대학 전기제어시스템공학부) ;
  • 하성관 (숭실대학교 공과대학 전기제어시스템공학부)
  • Published : 2004.10.01

Abstract

Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. A wide variety of techniques/algorithms for load forecasting has been reported in many literatures. These techniques are as follows: multiple linear regression, stochastic time series, general exponential smoothing, state space and Kalman filter, knowledge-based expert system approach (fuzzy method and artificial neural network). These techniques have improved the accuracy of the load forecasting. In recent 10 years, many researchers have focused on artificial neural network and fuzzy method for the load forecasting. In this paper, we propose an algorithm of a hybrid load forecasting method using fuzzy linear regression and general exponential smoothing and considering the sensitivities of the temperature. In order to consider the lower load of weekends and Monday than weekdays, fuzzy linear regression method is proposed. The temperature sensitivity is used to improve the accuracy of the load forecasting through the relation of the daily load and temperature. And the normal load of weekdays is easily forecasted by general exponential smoothing method. Test results show that the proposed algorithm improves the accuracy of the load forecasting in 1996.

Keywords

References

  1. 박후식, 문경준, 김형수, 황기현, 이화석, 박준호, '전력부하의 유형별 단기부하예측에 신경회로망의 적용', 대한전기학회논문지, 제48A권, 제1호, pp. 8-14, 1999년 1월
  2. 전력수급계획 및 운용해석 종합시스템 개발에 관한 연구 (최종보고서), 전력연구원, TR.94YJ15.J1998.89, 1998
  3. 공성일, 백영식, 송경빈, 박지호 '온도에 대한 민감도를 고려한 하절기 일 최대전력수요예측', 대한전기학회논문지, 제53A권, 제6호, pp.358-363, 2004년 6월
  4. K. B. Song, Y. S. Baek, D. H. Hong, G. S. Jang, 'Short-term load forcasting for the holidays using fuzzy linear regression method', 게재예정, IEEE Trans. on Power System
  5. K. H. Kim, H. S. Youn, Y. C. Kang, 'Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method', IEEE Trans. on Power Systems, vol. 15, no. 2, pp.559-565, 2000 https://doi.org/10.1109/59.867141
  6. 전력수급계획 및 운용해석 종합시스템 개발에 관한 연구 (중간보고서), 전력연구원, TM94YJ15.9705, 1996
  7. 하성관, 송경빈, 김재철, '전력 수요예측의 동향과 미래의 연구방향', 2003년도 대한전기학회 하계학술대회 논문집, pp.584-586, 2003년 7월
  8. D.H. Hong, S.H. Lee, H.Y. Do, 'Fuzzy Linear Regression Analysis for Fuzzy Input-output Data Using Shape Preserving Operations,' Fuzzy Sets and Systems 122, pp.513-526, September 2001 https://doi.org/10.1016/S0165-0114(00)00003-8