Fabry-Perot 레이저의 자기궤환 레이저 발진을 이용한 광섬유 길이 측정법

Fiber Length Measurement Technique based on a Self-Seeding Laser Oscillation of a Fabry-Perot Laser Diode

  • 윤기홍 (경북대학교 전기전자컴퓨터학부) ;
  • 송재원 (경북대학교 전기전자컴퓨터학부) ;
  • 김현덕 (경북대학교 전기전자컴퓨터학부)
  • Yoon Ki-Hong (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Song Jae-Won (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim Hyun Deok (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 발행 : 2004.12.01

초록

본 논문에서는 폐경로를 통한 Fabry-Perot 레이저의 자기궤환 레이저 발진 현상을 이용하여 새로운 광섬유 길이 측정 방법을 제안하였다. Fabry-Perot 레이저에 변조전류를 인가하여 생성된 광펄스를 피측정 광섬유를 포함하는 폐경로를 통과한 후 다시 레이저로 입사시키면 특정 변조주파수에서 자기궤환 레이저 발진이 유도될 수 있다. 제안된 측정법에서는 특정 모드에서 자기궤환 레이저 발진을 유도하기 위한 변조주파수들을 측정하고, 이 변조주파수들 사이의 차를 이용하여 광섬유의 길이를 계산하도록 한다. 제안된 측정법을 이용하여 0.1 ∼ 75 km 범위의 피측정 광섬유의 길이 측정을 수행하였고, 측정결과는 기존의 상용 계측기를 사용한 측정 결과와 잘 일치함을 실험적으로 검증하였다. 상용 계측기와의 상대 오차는 0.24 % 이하였고, 반복측정오차(repeatability)는 0.1 % 보다 작았다.

A simple fiber length measurement technique has been demonstrated by using a self-seeding laser oscillation of a Fabry-Perot laser diode. We induced a self-seeding laser oscillation through a closed-loop by adjusting the modulation frequency of a Fabry-Peort laser diode when the output optical pulse of the laser reinjected into the laser after passing through the closed-loop. The length of a fiber-under-test was calculated from the difference between my two modulation frequencies at which self-seeding laser oscillation occurs at a specific mode. We have experimentally confirmed the technique for various fiber lengths from 0.1 km to 75 km. The relative error between the measurement result of the proposed technique and that of a commercial instrument was less than 0.24 %. The repeatability of the proposed technique was better than 0.1 %.

키워드

참고문헌

  1. M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, 'Optical time domain reflectometer,' Appl. Opt., Vol. 16, pp. 2375-2379, 1977 https://doi.org/10.1364/AO.16.002375
  2. Y. Horiuchi et al, 'Novel coherent heterodyne optical time domain reflectometry for fault localization of optical amplifier submarine cable systems,' IEEE Photon. Technol. Lett, Vol. 2, pp. 291-293, 1990 https://doi.org/10.1109/68.53266
  3. K. Noguchi, 'A 100-km-Iong single-mode optical-fiber fault location,' J. Lightwave Technol., Vol. 2, pp. 1-6, 1984 https://doi.org/10.1109/JLT.1984.1073568
  4. K. Suzuki, K. Noguchi, and N. Uesugi, 'Long-range OTDR for single-mode optical fibre using a P2O5 highly doped fiber Raman laser,' Electron Lett., Vol. 22, pp. 1273-1274, 1986 https://doi.org/10.1049/el:19860873
  5. C. G. Bethea, B. F. Levine, S. Cova, and G. Ripamonti, 'High-resolution and high-sensitivity optical-time-domain reflectometer,' Opt. Lett., Vol. 13, pp. 233-235, 1988 https://doi.org/10.1364/OL.13.000233
  6. B. L. Danielson and C. D. Whittenberg, 'Guided-wave reflectometry with micrometer resolution,' Appl. Opt., Vol. 26, pp. 2836-2842, 1987 https://doi.org/10.1364/AO.26.002836
  7. D. Uttam, B. Culshaw, 'Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,' J. Lightwave Technol., Vol. 3, pp. 971-977, 1985 https://doi.org/10.1109/JLT.1985.1074315
  8. D. Huhse, M. Schell, J. Kaessner, D. Bimberg, I. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, 'Generation of electrically wavelength tunable (${\Delta\lambda}=40nm$ singlemode laser pulses from a $1.3{\mu}m$ Fabry-Perot laser by self-seeding in a fibre-optic configuration,' Electron. Lett., Vol. 30, pp. 157-158, 1994 https://doi.org/10.1049/el:19940084
  9. Ki-Hong Yoon, Jae-Won Song, Hyun Deok Kim, 'A simple dispersion measurement by using a self-seeding laser oscillation of Fabry-Perot laser diode,' OFC 2004, ThP 5, 2004