DOI QR코드

DOI QR Code

Effects of Substrates on Fiber Digestion Pattern and Fibrolytic Enzyme Production by Neocallimastix frontalis

기질의 종류가 Neocallimastix frontalis에 의한 섬유소 분해양상과 섬유소 분해 효소 생산에 미치는 영향

  • Sung, H.G. (School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Sung.S. (Division of Animal Science and Technology, Gyeongsang National University) ;
  • Ha, J.K. (School of Agricultural Biotechnology, Seoul National University)
  • 성하균 (서울대학교 농업생명과학대학 농생명공학부) ;
  • 이성실 (경상대학교 동물자원과학부) ;
  • 하종규 (서울대학교 농업생명과학대학 농생명공학부)
  • Published : 2004.10.31

Abstract

The patterns of fungal growth and fiber digestion under the microscope, and tile productions of fibrolytic enzyme were studied in an in vitro culture with Neocallimastix frontalis SA when either filter paper or rice straw was provided as sole energy source. Under the microscopic observation, active zoospores attachment, sporangium development and complex rhizoidal system were founded on the surface and at the edge of filter paper. After 7 days of incubation, a reduced fiber mass, a decreased fiber cohesion and a weakened fiber structure by fungal digestion were clearly observed. Similar fungal development was observed with rice straw, but fungal growth and digestion took place mostly on the damaged and exposed portion of rice straw. Although there were some differences in absolute concentration and pattern, the concentration of both cellulase and xylanase increased with incubation time with the higher activity being obtained with filter paper. Their differences were large especially after 48 and 96hr of incubation(P< 0.05). The filter paper was more good inducer of cellulolytic and xylanolytic enzymes compared with complex substrate, rice straw. These findings suggest that the filter paper is the better energy source for N frontalis than the complex substrate, and structural disintegration by physical process is able to help rumen fungal growth on the lignified roughage although anaerobic rumen fungi have mechanical and enzymatic functions for fiber digestion.

Neocallimastix frontalis SA에게 에너지원으로 filter paper 또는 볏짚만을 공급하여 반추위 곰팡이를 배양하는 동안 섬유소 분해 양상을 현미경으로 관찰하고 cellulase와 xylanase 생산에 미치는 영향을 비교하였다. 혐기성 반추위 곰팡이를 접종한 후 filter paper를 광학 현미경으로 관찰하였을 때 filter paper의 표면과 모서리에 유주자의 부착, 포자낭의 발달 그리고 복잡한 그물망의 균사 엽상체의 형성이 관찰되었으며, 배양 7일 후에는 filter paper의 소화 그리고 섬유사의 결착성 및 견고성의 감소 현상이 나타났다. 또한 분쇄한 볏짚 표면에서도 미성숙 및 성숙한 포자낭들이 관찰되었으며, 일반적으로 이들 균사들은 볏짚의 부스러진 부분이나 잘리어진 모서리에서 많이 발견되었다. cellulase와 xylanase는 배양기간 동안 filter paper와 볏짚 기질 모두에서 빠르게 그 농도가 증가하였으며, 볏짚 첨가시에 비해 filter paper 첨가시가 더 높은 경향을 보였다. 특히 두 가질간의 cellulase와 xylanase 효소 활성은 각각 48 그리고 96시간 배양 이후에 큰 차이를 보였다(P<0.05). 따라서 filter paper는 복합 구조를 갖는 볏짚에 비하여 cellulase와 xylanase 생산을 위한 더 좋은 유도 물질임을 발견하였다. 이상의 결과들을 N. frontalis에 대한 에너지원으로서 단일 복합체인 filter paper가 복합 구조의 볏짚에 비해 더 우수하였으며, 물리적 및 화학적으로 섬유소를 분해하는 혐기성 반추위 곰팡이라 할 지라도, 리그닌화된 견고한 섬유소 구조를 파괴시킬 수 있는 물리적 처리는 반추위 곰팡이의 분해 작용 및 성장에 도움을 줄 수 있음을 시사한다.

Keywords

References

  1. Akin, D. E. and Benner, R. 1988. Degradation of polysaccharides and lignin by ruminal bacteria and fungus. Appl. Environ. Microbiol. 54:1117-1125.
  2. Akin. D. E., Ames-Gottfred, N., Hartley, R. D., Fulcher R. G. and Rigsby , L. L. 1990. Microspectrophotome$\pi$y of phenolic compounds in bermudagrass cell walls in relation to rumen microbial digestion. Crop Sci. 30:394-401.
  3. Bemalier, A., Fonty, G , Bonnemoy, F. and Gouet, P. 1992. Degradation and fermentation of cellulose by the rumen anaerobic fungi in axenic culture or in association with cellulolytic bacteria. Curr Microbiol. 25:143-148.
  4. Brookman. J. L., Mennim, G., Trinci, A. P. J., Theodorou,M. K. and Tuckwell, D. S. 2000. Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITSl and 18SrRNA. Microbiol. 145:393-403.
  5. Bryant, M. P. and Burkey, L. A. 1953. Culture methods and some characteristics of the more numerous groups of bacteria in the bovine rumen. J Dairy Sci. 36:201-217.
  6. Chaudhry,A. S. 2000. Microscopic studies of structure and ruminal colonization in sheep of wheat treated with different alkalis. Anaerobe 6:115-161.
  7. Fonty, G. and Joblin, K. N., 1991. Rumen anaerobic fungi: their role and interaction with other rumen microorganisms in relation to fiber digestion. In Physiological Aspects of Digestion and Metabolism in Rumanians,T. Tsuda, Y. Sasaki, R. Kawashima, R, Academic Press, New York, pp. 655-679
  8. Gordon, G. L. R. and Phillips. M. W. 1998. The role of anaerobic gut fungi in ruminants. Nutr Res. Rev. 11:133-168.
  9. Gordon, G L. R. and Phillips, M. W. 1989. Degradation and utilization of cellulose and straw by three different anaerobic fungi from bovine rumen. Appl. Environ. Microbiol. 55:1703-1710.
  10. Ha, J. K., Kam, D. K., Jeon, H. S. and Lee, S. S. 2000. Role of xylan degrading enzymes in fiber digestion in ruminants. Asian-Aust. J. Anim. Sci 13:149-157 https://doi.org/10.5713/ajas.2000.149
  11. Ho, Y. W., Abdullah,N. and Jalaludin, S. 1988. Penetrating structures of anaerobic rumen fungi in cattle and swamp buffalo. J. Gen. Microbiol. 134: 177-181.
  12. Ho, Y. W. and Barr, G. J. S. 1995. Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia. 87:665-766.
  13. Hungate, K. N. 1950. The anaerobic mesophilic celluloytic bacteria. Bacterial Rev. 14:1-49.
  14. Lee, S. S., Shin, K. J., Kim, W. Y., Ha, J. K. and Han, In K. 1999. The rumen ecosystem: As a fountain source of nobel enzymes. Asian-Aust. J. Anim. Sci.12:988-1001.
  15. Lowe, S. E., Theodorou, M. K., Trinci, A. P. J. and HespeII,R. B. 1985. Growth of anaerobic rumen fungi on defined and semi-defmed media lackmg rumen fluid. J. Gen. Microbiol. 131:2225-2229.
  16. Lowe, S. E., Theodorrou, M. K. and Trinci, A. P. J. 1987. Cellulase and xylanase of an anaerobic rumen fungus grown on wheat straw, lignocellulose, cellulose, and xylanase. Appl. Environ. Microbiol. 53:1216-1223.
  17. Miller, G. L., Blum, R, Glennon, W. E. and Burton, A. L. 1960. Measurement of chaboxymethylcellulase activity. Anal. Biochem, 2:127-132.
  18. Mountfort, D. O. and Asher, R. A. 1989. Production of xylanase by the nuninal anaerobic fungus Neocallimastix frontalis. Appl. Environ. Microbiol. 55:1016-1024.
  19. Orpin, C. G. 1977. The rumen flagellate Piromonas communis: its life history and invasion of plant material in the rumen. J. of Gen. Microbiol. 99: 107-117. https://doi.org/10.1099/00221287-99-1-107
  20. Orpin, C. G. 1984. The role ciliate protozoa and fungi in the rumen digestion of plant cell walls. Anim Feed Sci. Technol. 10:121-143. https://doi.org/10.1016/0377-8401(84)90003-8
  21. Orpin, C. G. and Joblin, K. N. 1988. The rumen anaerobic fungi. In The rumen Microbial Ecosystem. P. N. Hobson (Ed), Elsevier Applied Science, London. p. 129-150.
  22. Pan, J., Koike, S., Suzuki, T., Uda, K., Kobayashi, Y., Tanaka, K. and Okubo, M. 2003. Effect of mastication on degradation of orchardgrass hay stem by rumen microbes: fibrolytic enzyme activities and microbial attachment. Anim, Feed Sci. Technol. 106:69-79.
  23. Pearce, P. D. and Bauchop, T. 1985. Glycosidases of the rumen anaerobic fungus Neocallimastix frontalis grown on cellulosic substrates. Appl. Environ. Microbiol. 49:1265-1269.
  24. Sanger, F., Nicklen, S. and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463-5464. https://doi.org/10.1073/pnas.74.12.5463
  25. Santra, A. and Karim, S. A. 2003. Rumen manipulation to improve animal productivity. Asian-Aust. J. Anim Sci. 16:748-763. https://doi.org/10.5713/ajas.2003.748
  26. SAS. 1996. User's Guide, Version 6.12. Statistical Analysis System Inst. Inc. Cary NC. USA.
  27. Steel, R. G. D. and Torrie, J. H. 1980. Principles and Procedure of Statistics: A Biometerical Approach 2nd ed. McGraw Hill Book Co., Inc., New York.
  28. Teunissen, M. J., Op Den Kamp, H. L. M., Orpin, C. G., Huis In't, Vwld, J, H. J. and Vogels, G. D. 1991. Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium. J. Gen. Microbiol. 137:1401-1408. https://doi.org/10.1099/00221287-137-6-1401
  29. Teunissen, M. J., De Kort G. V. M., Op Den H. J. M. and Huis In't Veld J. H. J. 1992. Production of cellulolytic and xylanolytic enzymes during growth of the anaerobic fungus Piromyces sp. on different substrates. J. Gen. Microbiol. 138:16571664.
  30. Trinci, A. P. J., Davies, D. R., Gull, K., Lawrence, M. I., Nielsen, B. B., Rickers, A. and Theodirou, M. K. 1994. Anaerobic fungi in herbivorous animals. Mycol. Res. 2:129-152.
  31. Ushida, K. Matsui, K., Fujino, Y. and Ha, J. K. 1997. Role and potential of nuninal fungi in fiber digestion. Asian-Aus. J. Anim. Sci. 10:541-550 https://doi.org/10.5713/ajas.1997.541
  32. Williams, A. G. and Orpin, C. G. 1987. Polysaccharide-degrading enzymes formed by three anaerobic fungi grown on a range of carbohydrate substrates. Can. J. Microbiol. 33:418-426. https://doi.org/10.1139/m87-071
  33. Yanke, L. J., Selinger, L. B., Lynn, J. R. and Cheng, K. J. 1996. Comparison of the influence of carbon substrates on the fibrolytic activities of anaerobic rumen fungi. Anaerobe. 2:373-378. https://doi.org/10.1006/anae.1996.0047
  34. 이성실, 하종규, 강희신, McAllister, T. A., Cheng, K. J. 1997. 반추위 혐기성 곰팡이의 섬유소 분해율 및 섬유소 분해 효소의 특성에 관한 고찰. 한낙농지. 19:59-84.
  35. 하종규, 이성실, 고종열. 2003. 반추동물영양실험법. 서울대학교출판부. pp. 167-294.