DOI QR코드

DOI QR Code

Characteristics of Lactate Dehydrogenase Produced from Lactobacillus sp. FFy111-1 as a Ruminant Probiotic

반추동물용 활성제로서 Lactobacillus sp. FFy111-1이 생산한 Lactate Dehydrogenase의 특성에 관한 연구

  • Sung, H.G. (Faculty of Life Science and Technology, Sungkyunkwan University) ;
  • Kim, D.K. (Department of Animal Science and Technology, Sangji University) ;
  • Bae, H.D. (Faculty of Life Science and Technology, Sungkyunkwan University) ;
  • Shin, H.T (Faculty of Life Science and Technology, Sungkyunkwan University)
  • 성하균 (성균관대학교 생명공학부) ;
  • 김동균 (상지대학교 동물자원학과) ;
  • 배희동 (성균관대학교 생명공학부) ;
  • 신형태 (성균관대학교 생명공학부)
  • Published : 2004.08.31

Abstract

The objective of this experiment is to study the possibility of lactate dehydrogenase(LDH) enzyme to prevent lactate accumulation in the rumen, For understanding capacity of bacterial LDH in rumen environments, this study was conducted to explore the effects of temperature, pH, VFAs and metal ions on Lactobacillus sp. FFy111-1's LDH activity, and the LDH activation in rumen fluid accumulated lactate. The optimum pH and temperature of LDH were pH 7.5 and 40$^{\circ}C$, respectively. The LDH activity had a good thennostability at range from 30 to 50$^{\circ}C$. The highest pH stability of the enzyme was at ranges from pH 7.0 to 8.0 and the enzyme activities showed above 64% level of non-treated one at pH 6.0 and 6.5. The LDH was inactivated by VFAs treatments but was enhanced by metal ion treatments without NaCl and $CuSO_4$ Especially, the LDH activity was increased to 127% and 124% of its original activity by 2 mM of $BaCl_2$ and $MnSO_4$, addition, respectively. When the acidic rumen fluid was treated by LDH enzyme of Lactobacillus sp. FFy111-1, the lactate concentration in the rumen fluid was lower compared with non-treated rumen fluid(P<0.05). This lactate reduction was resulted from an action of LDH. It was proved by result of purified D,L-LDH addition that showed the lowest lactate concentration among the treatments(P<0.05). Although further investigation of microbial LDH and ruminal lactate is needed, these findings suggest that the bacterial LDH has the potential capability to decrease the lactate accumulated in an acidic rumen fluid. Also, screening of super LDH producing bacteria and technical development for improving enzyme activity in rumen environment are essential keys for practical application.

본 연구는 미생물 유래 lactate dehydrogenase(LDH)를 이용하여 반추위내에 lactate 축적을 예바하기 위한 기능성 검증을 목적으로 수행되었다. 미생물의 효소활성에 영향을 주는 많은 반추위내 요인들 중 대표적인 것들 즉, 온도, pH, 휘발성지방산(VFAs) 그리고 금속이온들이 Lactobacillus sp. FFy111-1의 LDH 효소활성에 미치는 영향과, 반추위액내 축적된 lactate에 대한 LDH 작용을 평가하였다. Lactobacillus sp. FFy111-1의 LDH는 각각 pH 7.5와 40$^{\circ}C$에서 가장 좋은 효소 활력을 보였다. 온도 안정성은 30$^{\circ}C$에서 가장 좋게 나타났으며 30${\sim}$50$^{\circ}C$의 온도 범위에서는 80% 이상의 활성을 유지하였다. 그리고 pH 안정성은 pH 7.0과 8.0에서 모두 가장 좋은 결과를 나타냈으며 pH 6.1과 6.5에서 64% 이상의 효소활성을 유지하였다. VFAs와 금속이온이 LDH에 미치는 영향을 측정하였을 때, VFAs 처리는 LDH 효소활성을 억제하였으나, NaCl과 $CuSO_4$를 제외한 금속 이온 처리에서는 LDH 효소활성이 증가되었다. 특히 2mM $BaCl_2$$MgSO_4$로 처리 하였을 때 가각 비처리 효소활성의 127과 124% 수준까지 효소활성이 증진되었다. 반추위액내 축적된 lactate에 대한 LDH 작용을 보기 위하여 Lactobacillus sp. FFy111-1의 효소를 산중독 반추위액에 처리하였을 때 lactate의 농도가 무처리 반추위액내 lactate 농도의 78% 수준으로 감소하였다(P<0.05). 이와 같은 lactate 감소는 LDH의 작용에 의해 나타난 현상으로 정제된 D,L-LDH를 첨가한 실험결과(34% lactate)에서 입증되었다(P<0.05). 이상의 연구 결과들을 고려하여 볼 때 미생물이 생성한 LDH는 반추위내 축적된 lactate를 감소시킬 수 있는 충분한 가능성을 갖고 있다고 사료된다. 또한 더 좋은 미생물의 발굴과 반추위 환경에서 LDH 활성을 높이기 위한 기술개발이 LDH 효소의 실제적 응용을 위하여 필수적이다.

Keywords

References

  1. Asian, V., Thamsborg, S. M., Jorgensen, R J. and Basse, A. 1995. Induced acute ruminal acidosis in goats treated with yeast(Saccharomyces cerevisiae) and biocarbonate. Acta Vet. Scand. 36:65-77.
  2. Bergmeyer, H. U. 1974. Methods of Ernzymatic Analysis(3rd Ed). Academic Press, Inc. New York.
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brown, A. T., Christian, C. P. and Eilert, R. L. 1975. Purification, characterization and regulation of a nicotinamide adenine dinucleotide- dependent lactate dehydrogenase from Actinomyces viscosus. J. Baeteriol. 122:1126-1135
  5. Coe, M. L., Nagaraja, T. G., Sun, Y. D., Wallace, N., Town, E. G., Kemp, K. E. and Hutchenson, J. P. 1999. Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis. J. Anim. Sci. 77:2259-2268. https://doi.org/10.2527/1999.7782259x
  6. Crow, V. L. and Prichard, G. C. 1977. Fructose 1,6-diphosphate-activated L-Iactate dehydrogenase from Streptococcus lactis; kinetic properties and factors affecting activation. J. Bacteriol. 131:82-91.
  7. Dennis, D. and Kaplan, N. O. 1960. D- and LLactic acid dehydrogenases in Lactobacillus plomanon. J. BioI. Chem. 235:810-818.
  8. Duncan, D. B. 1955. Multiple range and multiple F test. Biometerics. 11:1.
  9. Garvie, E. I. 1980. Bacterial lactate dehydrogenases. Microbiological Review. 44: 106-139.
  10. Gasser, F., Doudoroff, M and Contopoulos, R. 1970. Purification and properties of NAD dependent lactic dehydrogenases of different species of Lactobacillus. J. Gen. Microbiol. 62:241-250.
  11. Gordon, G. L. and Doelle, H. W. 1974. Molecular aspects for the metabolic regulation of the nicotinamide adenine dinuclotide-dependent D(-)-Iactate dehydrogenase from Leuconostoc. Microbios. 9:119-215.
  12. Gordon, G. L. and Doelle, H. W. 1975. Production of racemic lactic acid in Pediococcus cerevisiae cultures by two lactate dehydrogenases. J. Baeteriol. 121:600-607
  13. Gordon, G. L. and Doelle, H. W. 1976. Purification, properties and immunological relationship of L(+)-Iaetate dehydrogenase from Lactobacillus casei. Eur. J. Biochem. 67:543-555. https://doi.org/10.1111/j.1432-1033.1976.tb10720.x
  14. Hensel, R., Mayr, D., Stetter, K. O. and Kandler, O. 1977. Comparative studies of lactic acid dehydrogenases in lactic acid bacteria I. Purifiction and kinestics of the allosteric L-Iactic acid dehydrogenase from Lactobacillus casei ssp. casei and Lactobacillus curvatus. Arch. Microbiol. 112:81-93.
  15. Hino, T. and Kuroda, S. 1993. Presence of lactate dehydrogenase and lactate racemase in Megasphera elsdenii grown on glucose or lactate. Appl. Environ. Microbiol. 59:255-259.
  16. Kung, L. Jr. and Hession, A. O. 1995. Prevention in vitro lactate accumulation in ruminal fermentation with Megasphaera elsdenii. J. Anim. Sci. 73:250-256. https://doi.org/10.2527/1995.731250x
  17. Moore, G. A. and Martin, S. A. 1991. Effect of growth conditions on the Streptococcus bovis phosphopenol pyruvate glucose phosphotransferase system. J. Anim. Sci. 69:4967-4973. https://doi.org/10.2527/1991.69124967x
  18. Owens, F. N., Secrist, D. S., Hill, W. J. and Gill, D. R. 1998. Acidosis in cattle; A Review. J. Anim. Sci. 96:275-286.
  19. Russell, J. B. and Hino, T. 1985. Regulation of lactate production in Streptococcus bovis : A spiraling effect that contributes to rumen acidosis. J. Dairy Sci. 68:1712-1721.
  20. Russell, J. B. and Rychlik, J. L. 2001. Factors that alter rumen microbial ecology. Science 292:1119-1122. https://doi.org/10.1126/science.1058830
  21. SAS. 1996. User.s Guide, Version 6.12. Statistical Analysis System lost. Inc. Cary NC. USA.
  22. Scheifinger, C. C., Latham, M. J. and Wolin, M. J. 1975. Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium. Appl. Microbiol. 30:916-921.
  23. Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Anim. Sci. 43:910-929. https://doi.org/10.2527/jas1976.434910x
  24. Strasser de Saad, A. M., Pesce de Ruiz, A. A. and Oliver, G. 1986. D-(+)-Iactate dehydrogenase from Lactobacillus murinus. Biotechnol. Appl. Biochem. 8:370-374.
  25. Trinci, A. P. J., Davies, D. R., Gull, K., Lawrence, M. I., Nielsen, B. B., Rickers, A. and Theodrou, M. K. 1994. Anaerobic fungi in herbivorous animals. Mycol. Res. 98:129-141. https://doi.org/10.1016/S0953-7562(09)80178-0
  26. Weerkamp, A. and MacElroy, R. D. 1972. Lactate dehydrogenase from an extremely Thermophilic bacillus. Arch. Microbio!. 85:113-122.
  27. Weimer, P. J. 1992. Cellulose degradation by ruminal microorganisms. CRC Crit. Rev. Biotechnol. 12:189-194. https://doi.org/10.3109/07388559209069192
  28. Weimer, P. J. 1996. Why don't ruminal digest cellulose faster? 1. Dairy Sci. 79:1496-1502. https://doi.org/10.3168/jds.S0022-0302(96)76509-8
  29. Wrba, A., Janicke, R Huber, R and Steter, H. O. 1990. Lactate dehydrogenase from the extrem thermophole Thermotoga maritima. Eur. J. Biochem, 188:195-201. https://doi.org/10.1111/j.1432-1033.1990.tb15388.x