DOI QR코드

DOI QR Code

Nonlinear Finite Element Analysis of Reinforced Concrete Bridge Piers Including P-delta effects

P-delta 영향을 포함한 철근콘크리트 교각의 비선형 유한요소해석

  • Published : 2004.10.01

Abstract

The purpose of this study is to investigate the inelastic behavior and ductility capacity of reinforced concrete bridge piers including P-delta effects. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In addition to the material nonlinear properties, the algorithm for large displacement problem that may give an additional deformation has been formulated using total Lagrangian formulation. The proposed numerical method for the inelastic behavior and ductility capacity of reinforced concrete bridge piers is verified by comparison with reliable experimental results.

이 연구의 목적은 P-delta 영향을 포함한 철근콘크리트 교각의 비탄성 거동 및 연성능력을 파악하는데 있다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였다. 비교적 큰 압축하중과 함께 지진하중과 같이 큰 규모의 횡하중으로 인한 대변위 문제를 고려할 수 있도록 total Lagrangian 정식화 기법을 사용하였다. 이 연구에서는 철근콘트리트 교각의 비탄성 거동 및 연성능력의 파악을 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

Keywords

References

  1. Kim, J. K and Lee, S. S., 'The Behavior of Reinforced Concrete Colunms Subjected to Axial Force and Biaxial Bending,' Engineering Structures, Vol. 23, 2000, pp. 1518-1528
  2. Yalcin, C and Saatcioglu, M, 'Inelastic Analysis of Reinforced Concrete Colunms,' Computers and Structures, Vol. 77, No.5, 2000, pp. 539-555
  3. 김태훈, 신현목, 'Analytical Approach to Evaluate the Inelastic Behaviors of Reinforced Concrete Structures under Seismic Loads,' 한국지진공학회 논문집, 제5권,2호, 2001, pp. 113-124
  4. Kim, T. H., Lee, K. M, Yoon, C. Y., and Shin, H. M, 'Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Piers under Earthquake. I: Theory and Formulation,' Journal of Structural Engineering, ASCE, V. 129, No.9, 2003, pp. 1199-1207
  5. 김태훈, '비선형 유한요소해석을 이용한 철근콘크리트교각의 내진성능평가,' 박사학위 논문, 성균관대학교, 2003
  6. 김태훈, 김운학, 신현목, '변동 축하중을 받는 철근콘크리트 교각의 내진성능평가', 한국 지진공학회 논문집, 제7권, 제2호, 2003, pp. 67-73
  7. Mander, J. B., Panthaki, F. D., and Kasalanati, K, 'Low-Cycle Fatigue Behavior of Reinforcing Steel,' Journal of Materials in Civil Engineering, ASCE, Vol.6, No.4, 1994, pp. 453-468
  8. Kakuta, Y., Okamura, H, and Kohno, M., 'New Concepts for Concrete Fatigue Design Procedures in Japan,' IABSE Colloquium on Fatigue of Steel andConcrete Structures, Lausanne, 1982, pp. 51-58
  9. Bathe, K. J., Finite Element Procedures, Prentice-Hall, 1996
  10. Taylor, R. L., FEAP - A Finite Element Analysis Program, Version 7.2, Users Manual, Volume 1 and Volume 2, 2000
  11. Cere, J. M and Timoshenko, S. P., Mechanics of Materails, a divisions of Wadsworth, Inc., California, 1984, pp. 414-418
  12. Kunnath, S. K, El-Bahy, A, Taylor, A, and Stone, W., 'Cumulative Seismic Damage of Reinforced Concrete Bridge Piers,' Report No. NCEER-97-0006,National Center for Earthquake Engineering Research, State University of New York at Buffalo,1997
  13. El-Bahy, A, Kunnath, S. K, Stone, W. C., and Taylor, A. W., 'Cumulative Seismic Damage of Circular Bridge Colunms: Variable Amplitude Tests,' ACI Structural Journal, Vol. 96, No.5, 1999, pp. 711-719
  14. American Association of State Highway and Transportation Officials (AASHTO), Standard Specifications for Highway Bridges, Sixteenth Edition, Washington, D. C, 1996