Acidithiobacillus ferrooxidans를 고정화한 생물반응기와 흡수탑을 이용한 고농도 황화수소 제거

Removal of High Strength Hydrogen Sulfide Gas using a Bioreactor Immobilized with Acidithiobacillus ferrooxidans and a Chemical Absorption Scrubber

  • 류희욱 (숭실대학교 환경, 화학공학과) ;
  • 이내윤 (이화여자대학교 환경학과) ;
  • 조경숙 (이화여자대학교 환경학과)
  • Ryu, Hui-Uk (Department of Chemical and Environmental Engineerin& Soongsil University) ;
  • ;
  • 발행 : 2004.12.01

초록

고농도의 황화수소 가스를 제거하기 위하여 철촉매인 $Fe^{3+}$ 을 생산할 수 있는 철산화 세균 A. ferrooxidans를 다공성 세라믹 담체에 고정화한 생물반응기와 황화수소가 $Fe^{3+}$ 와 화학반응에 의해 elemental sulfur로 제거되는 흡수탑 반응기로 구성된 2단계 생물학적 탈황공정을 연구하였다. 생물반응기는 4회 이상의 반복 회분식 배양을 통해 안정화 되었고, 정상상태에서의 평균 철산화 속도는 $0.89kg{\cdot}m^{-3}{\cdot}h^{-1}$ 이었다. 2단계 생물 탈황공정은 약 54일 동안 장기간 성공적으로 조업이 가능하였다. 흡수탑 반응기에서는 공간속도를 70 $h^{-1}$ 의 조건하에서 37.000 ppm의 고농도 $H_{2}S$ 제거 임계 부하량은 3.3 kg $S{\cdot}m^{-3}{\cdot}h^{-1}$ 로 우수하였다. 장기간 조업하는 동안 고정화 세포의 농도는 일정하게 유지되었다.

To treat a waste gas containing a high strength H2S, the two-stages microbial desulfurization process that conof a bioreactor immobilized with Acidithiobacillusferrooxidans and a chemical absorption scrubber has was proposed. After 4 times repeat of batch cultures, the immobilized bioreactor has been stabilized and the rate of iron oxidation reached 0.89 kg . $m^{-3}{\cdot}m^{-1}$ at steady state. The two-stages microbial desulfurization prowas able to be operated for a long term over 54 days. The removal efficiencies of H2S were 97-99% at a space velocity of 70 h-I and a inlet concentration of 37,000 ppmv. The maximum elimination capacity of H2S was approximately 3.3 kg S . $m^{-3}{\cdot}m^{-1}$. In the bioractor, the concentrations of the $Fe^{3+}$ and the immobilzed cell were constantly maintained during the desulfurization.

키워드

참고문헌

  1. Barron, J. L. and D. R. Leuking. 1988. Growth and maintenance of Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol. 54: 3101-3106
  2. Cho, K. S., H. W. Ryu, and N. Y. Lee. 2000. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. J. Biosci. Bioeng. 90: 25-31
  3. Cho, K.S., M. Hirai, and M. Shoda. 1992. Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. J. Ferment. Bioeng. 73: 46-50
  4. Dalai, A.K., A. Majumdar, and E.L. Tollefson. 1999. Low Temperature catalytic oxidation of hydrogen sulfide in sour produced wastewater using activated carbon catalysts. Environ. Sci. Technol. 33: 2241-2246
  5. Gadre, R.V. 1989. Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol. Bioeng. 34: 410-414
  6. Halfmeier, H., W. Schafer-Treffenfeldt, and M. Reuss. 1993. Potential of Thiobacillus ferrooxidans for waste gas purification. Part 1. Kinetics of continuous ferrous iron oxidation. Appl. Microbiol. Biotechnol. 40: 416-420
  7. Jensen, A.B. and C. Webb. 1995. Ferrous sulfate oxidation using Thiobacillus ferrooxidans: A review. Pro. Biochem. 30: 225-236
  8. Jensen, A.B. and C. Webb. 1995. Treatment of $H_2$S-containing gases: A review of microbiological alternatives. Enz. Micro. Technol. 17: 2-10 https://doi.org/10.1016/0141-0229(94)00080-B
  9. Park S.J., H.J. Oh, and O. Seishi. 1992. The characteristic of odor emitted from sewage and nightsoil treatment plants in Korea. J. Odor Res. Eng. 24: 52-55
  10. Park, S.J., K.S. Cho, M. Hirai, and M. Shoda. 1993. Removability of malodorous gases from a night soil treatment plant by a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. J. Ferment. Bioeng. 76: 55-59
  11. Ryu, H.W., K.S. Cho, Y.K. Chang, S.D. Kim, and T. Mori. 1995. Refinement of low-grade clay by microbial removal of sulfur and iron compounds using Thiobacillus ferrooxidan. J. Ferment. Bioeng. 80: 46-52
  12. Sublette, K.L. 1987. Oxidation of hydrogen sulfide by Thiobacillus denitrificans: Desulfurization of natural gas. Biotechnol. Bioeng. 29: 249-257