Process Optimization for Concentration and Stabilization of Recombinant Endoxylanase Expressed in Bacillus subtilis

Bacillus subtilis에서 발현된 재조합 Endoxylanase 농축과 안정화 공정의 최적화

  • Choe, Yeong-Rok (Department of Microbiology, Dong-Eui University) ;
  • Park, Jeong-Ha (Department of Microbiology, Dong-Eui University) ;
  • ;
  • Kim, Yeong-Man (Department of Food and Nutrition, , Dong-Eui University, Oriental Biotech. Co.) ;
  • Gwon, Hyeon-Ju (Department of Microbiology, Dong-Eui University) ;
  • Kim, Byeong-U (Department of Microbiology , Dong-Eui University)
  • 최영록 (동의대학교 미생물학과) ;
  • 박정하 (동의대학교 미생물학과) ;
  • 남수완 (동의대학교 생명공학과) ;
  • 김영만 (식품영양학과 및 (주) 오리엔탈바이오텍) ;
  • 권현주 (동의대학교 미생물학과) ;
  • 김병우 (동의대학교 미생물학과)
  • Published : 2004.12.01

Abstract

A strong constitutive PJH promoter from Bacillus sp. was applied to overexpress the endoxylanase gene (639 bp) in Bacillus subtilis. The expression plasmid, pJHKJ4, was designed to contain the $P_{JH}$ promoter and open reading frame of endoxylanase including its own promoter. The plasmid was introduced into B. subtilis DB431 and the resulting transformant was grown on LB glucose medium. At the end of cultivation, the endoxylanase activity in the culture supernatant reached about 140 DIm!. The enzyme in the supernatant was concentrated by ultrafiltration (MW cut-off 10 kDa and 30 kDa) and ammonium sulfate precipitation. For the concentration of the enzyme, ultrafiltration was more efficient than 70% ammonium sulfate precipitation. The stabilization of concentrated enzyme solution at $50^{\circ}C$ was examined with various stabilizers such as NaCI, glycerol, polyethylene glycol, sorbitol, and $CaCI_2$. The most effective stabilizers were found to be NaCI and $CaCI_2$.

구성적 promoter인 $P_{JH}$ promoter 하류에 연결된 Bacillus sp. 유래의 endoxylanase를 B. subtilis에서 과발현 하였다. 발현된 plasmid, pJHKJ4는 자체 promoter($P_{B}$)와 Bacillus의 강력한 promoter($P_{JH}$)가 tandem으로 위치하여 transcription되었다. B.subtilis DB431에 형질전환된 균주를 glucose가 함유된 LB 배지에서 배양 후 총활성 및 분비효율은 140 U/ml 으로 나타났다. 배양상등액은 ultrafiltration(MW cut off 10 kDa and 30 kDa)과 염석법으로 농축하였다. 효소의 농축에서 ultrafiltration이 70% ammonium sulfate precipitation 보다 효과적이었다. $50^{\circ}C$ 에서 농축된 효소액의 안정화는 NaCl, glycerol, sorbitol, and $CaCl_{2}$ 등의 다양한 안정제를 농도별로 첨가하여 안정제의 효과를 검토한 결과 가장 효과적인 안정제는 NaCl과 $CaCl_{2}$ 이었다.

Keywords

References

  1. Ahn, J. H., J. B. Hwang, and S. H. Kim. 1991. Effect of various additives and solvents on thermostability of cyclodextrin glucanotransferase from Bacillus stearothermopilus. Kor. J. Appl. Microbiol. Biotechnol. 19: 368-371
  2. Bajpai, P. (1999) Application of enzymes in the pulp and paper industy. Biotechnol. Prog. 15: 147-157
  3. Bae, S. H. and Y. J. Choi. 1991. Purification and characterization of extracellular xylanase of Bacillus stearothermophilus. Kor. J. Appl. Microbiol. Biotechnol. 19: 592-597
  4. Bernier R. J., H. Driguez, and M. Desrochers. 1983. Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli. Gene 26: 59-65
  5. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290
  6. Chun, Y. C., K. H. Jung, J. C. Lee, S. H. Park, H. K. Chung, and K. H. Yoon. 1998. Molecular cloning and the nucleotide sequence of a Bacillus sp. KK-1 $\beta$-xylosidase gene. J. Microbiol. Biotechnol. 8: 28-33
  7. Citri, N. 1973. Conformational adaptability in enzymes. Adv. Enzymol. Relat. Areas. Mol. Biol. 37: 397-648
  8. George S. P., A. Ahmad, and M. B. 2001. A novel thermostable xylanase from Thermomonospora sp.: influence of additives on thermostability. Bioresour. Technol. 78: 221-224
  9. Kim, J. H., J. H. Kim, S. C. Kim, and S. W. Nam. 2000. Constitutive overexpression of endoxylanase gene in Bacillus subtilis. J. Microbiol. Biotechnol. 10: 551-553
  10. Kim, S. S., J. H. Lee, Y. S. Ahn, J. H. Kim, and D. K. Kim. 2003. A fibrinolytic enzyme from Bacillus amyloliquefaciens D4-7 isolated from Chungkook-Jang; it,s characterization and influence of additives on thermostability. Kor. J. Appl. Microbiol. Biotechnol. 31: 271-276
  11. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  12. Li, X. L., Z. Q. Zhang, F. D. D. Jeffery, L. E. Karl-Erick and G. L. Lars. 1993. Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1. Appl. Environ. Microbiol. 59: 3212-3218
  13. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  14. Neu, H. C. and L. A. Heppel. 1965. The release of enzymes from E.coli by osmotic shock and during the formation of spheroplast. J. Biol. Chem. 240: 3685-3692
  15. Niehaus, F., C. Bertoldo, M. Kahler, and G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51: 711-729
  16. Panbangred W., T. Kondo., S. Negoro., A. Shinmyo, and H. Okada. 1983. Molecular cloning of the genes for xylan degradation of Bacillus pumilus and their expression in Escherichia coli. Mol. Gen. Genet. 192: 335-341
  17. Ragauskas, A. J., K. M. Poll, and A. J. Cesternino. 1994. Effects of xylanase pretreatment procedures on nonchlorine bleaching. Enzyme Microb. Technol. 16: 492-495
  18. Shendye A. and M. Rao. 1993. Molecular cloning and expression of xylanases from an alkalophilic thermophilic Bacillus (NCIM 59) in Bacillus subtilis A8. Enzyme Microb. Technol. 15: 343-347
  19. Smith, P. K., R. I. Krohn, G. T. Hermanson. A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk, 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem., 150: 76-85
  20. Srinivasan, M. C. and M. V. Rele. 1999. Microbial xylanases for paper industry. Curr. Sci. 77: 137-142
  21. Sung, C. K., S. W. Lee, S. K. Park, and B. S. Shon. 1996. Purification and characterization of xylanase II from Aspergillus niger SFN-416. Kor. J. Appl. Microbiol. Biotechnol. 24 : 687-692
  22. Viikari, L., A. Kantelinen, J. Sandquist. and M. Linco. 1994. Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev. 13: 338-350
  23. Whistler, R. L. and E. L. Richard. 1970. Hemicellulose, pp. 447-469. In Pigman W, Horton D (eds.), The Carbohydrates, Academic Press, New York
  24. Wong, K. K. Y., S. L. Nelson, and J. N. Saddler. 1996. Xylanase treatment for the peroxide bleaching of oxygen delignified kraft pulps derived from three softwood species. J. Biotechnol. 48: 137-145
  25. Wong, K. K. Y., U. L. Larry. and J. N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganism: Functions and applications. Microbiol. Rev. 52: 305-317
  26. Ye, R., J. H. Kim., B. G. Kim., S. Szarka., E. Sihota, and S. L. Wong. 1998. High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol. Bioeng. 62: 87-96