Effect of Low Light Intensity after Fruit Set on the Growth and Quality of Cucumber(Cucumis sativus cv. Hyakunari-3).

착과기 이후의 약공 조건이 백침게 오이의 생육반응 및 품질에 미치는 영향

  • Published : 2004.03.01

Abstract

This experiment was conducted to investigate the effects of different levels of light intensity (100, 200, 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$, and natural light) on the growth and the fruit quality of cucumber(Cucumis sativus cv. Hyakunari-3). The results of this experiment indicated that plant height and length of lateral shoots were decreased under low light condition, but it was not significantly different among treatments. Leaf area and root weight were lowest under low light intensity(100 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$), but no significant differences were noted between 200 and 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$. Photosynthesis rate was decreased with reduced light intensity and total chlorophyll contents, root activity and xylem sap were also decreased under low light intensity, but there was no significant difference between 200 and 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$. From the SEM observation the erosion of the guard cells and closed stomata in low light treatment were shown and the size of stoma were small also the stomatal aperture were decreased with reducing the light intensity. Chlorosis in leaves and aborted-liked fruits were appeared under low light condition and Ca and Mg uptake in leaves were decreased by shading in proportion to the decrease of light intensity. Fruit yields were decreased by 65% under 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$, and by 80${\sim}$90% under 200 and 100 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$, compared to those under the natural light. This low intensity of light caused the sharp decrease in the early harvested yields within two weeks and the fruit yields of lateral shoots were greatly decreased.

본시험은 백침계 오이에 있어 착과기 이후의 저광도 조건이 생육 및 수량에 미치는 영향을 검토코자 수행되었다. 광도 처리는 무처리를 비롯하여 100, 200, 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$로 되도록 하였다. 초장과 측지길이는 광도가 낮았던 처리에서 크게 감소되었으나, 저광도 처리간에는 차이를 보이지 않았다. 엽면적과 근중은 100${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$에서 가장 적었으나, 200과 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$처리간에는 차이를 보이지 않았다. 광합성량은 저광도가 될수록 감소되었다. 엽록소 함량과, 근활력 및 일비액 역시 낮은 광도에서 감소하였는데, 200 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$과 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$처리간에는 차이를 보이지 않았다. 잎의 기공 관찰 결과 낮은 광도에서 기공세포의 발달이 억제되었고 기공의 개도도 완전하지 않았으며, 기공크기가 작았으나 기공수는 증가하였다. 낮은 광도 하에서 잎에 황화현상과 유과 형태의 비정상과가 발생되었다. 또한 잎의 Mg와 Ca의 흡수량이 광도가 낮아짐에 따라 저하되었다. 수확과수는 자연광에 비하여 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$에서 65%, 200고 100 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$에서 각각 80%와 90%의 수량감소를 보였다. 이러한 저광 조건은 처리 후 2주 정도의 초기수량에 크게 영향을 끼쳤으며, 특히 측지 수확과수가 현저히 줄어드는 결과를 보였다.

Keywords

References

  1. Bottrill, D.E., J.V. Possingham, and P.E. Kriedemann. 1970. The effect of nutrient deficiencies on photosynthesis and respiration in spinach. Plant Soil. 32:424- 438 https://doi.org/10.1007/BF01372881
  2. Chung, J.H., K.J. Choi, K.D. Ko, J.B. Seo, and K.Y. Kim. 1999. Cultivation of white spine cucumber. RDA, Suwon, Korea (in Korean)
  3. Hanada, T., T. Kazuhiko, N. Masaaki, and Y. Hiroshi. 1981. Effect of nitrogen, magnesium and phosphorus concentration in nutrition solution on the photosynthesis of cucumber leaves. Bull. Natl. Res. Inst. Veg., Ornam. Plant, Tea Japan. 9:83-96 (in Japanese)
  4. Katou, T. 1989. Vegetable growth and root distribution. Biam Heungjin. Japan. p. 6-32 (in Japanese)
  5. Kim, S.U. 1996. Factors affecting on the fruit abortion of cucumber(Cucumber sativus L.).PhD Diss., Seoul Natl. Univ., Seoul, Korea (in Korean)
  6. Knecht, G.N. and J.W. O'Leary. 1972. The effect of light intensity on stomate number and density of Phaseolus vulgaris L. leaves. Bot. Gaz. 133:132-134 https://doi.org/10.1086/336626
  7. Lee, S.G., K.C. Kim, T.C. Seo, Y.K. Kang, H.G. Yun, and H.D. Seo. 2003. Effects of low light intensity after fruit set on growth and quality of oriental melon. J. Kor. Soc. Hort. Sci. 44:31-34 (in Korean)
  8. Moon, J.H. 2001. Physiological response of cucumber to root-zone temperature. PhD Diss., Seoul Natl. Univ., Seoul, Korea (in Korean)
  9. Park H.Y. 1988. Factors in relations to development lateral shoots in cucumber plant(Cucumis sativus L.). PhD Diss., Tokyo. Univ., Japan (in Japanese)
  10. Seong, K.C. 2001. The review of cultivation techniques for lateral shoot development in white spined cucumber. Kor. Res. Soc. Protected Hort. 14:25-35 (in Korean)
  11. Seong, K.C., J.H. Moon, S.K. Lee, Y.K. Kang, K.Y. Kim, and H.D. Seo. 2003. Growth, lateral shoot development, and fruit yield of white-spined cucumber (Cucumber sativus cv. Baekseong-3) as affected by grafting methods. J. Kor. Soc. Hort. Sci. 44: 478-482 (in Korean)
  12. Tachibana, S. 1982. Comparison of effects of root temperature on the growth and mineral nutrition of cucumber cultivars and figleaf gourd. J. Japan. Soc. Hort. Sci. 51: 299-308 (in Japanese) https://doi.org/10.2503/jjshs.51.299
  13. Yoshida, O.K. 1966. Analytical method of root activity. J. Japan. Soc. Soil Sci. Fert. 37:63-68 (in Japanese)
  14. Yasui, H. and F. Honda. 1982. The effects of nitrogen on the growth of tomato and cucumber plants growth under the different solar radiations. Bull. Natl. Res. Inst. Veg., Ornam. Plant, Tea Japan. 6:1-19 (in Japanese)
  15. Zhong, L.F. and T. Kato. 1988. The effect of sunlight intensity on growth, yield and chemical composition of xylem exudate in solanaceous fruits. Res. Rep. Kochi Univ. Agr. Sci. 37:39-40 (in Japanese)