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QoS- and Revenue Aware Adaptive Scheduling Algorithm

Jyrki Joutsensalo, Timo Héméldinen, Alexander Sayenko, and Mikko Paikkonen

Abstract: In the near future packet networks should support appli-
cations which can not predict their traffic requirements in advance,
but still have tight quality of service requirements, e.g., gnaranteed
bandwidth, jitter, and packet loss. These dynamic characteristics
mean that the sources can be made to modify their data trans-
fer rates according to network conditions. Depending on the cus-
tomer’s needs, network operator can differentiate incoming con-
nections and handle those in the buffers and the interfaces in differ-
ent ways. In this paper, dynamic QoS-aware scheduling algorithm
is presented and investigated in the single node case. The purpose
of the algorithm is — in addition to fair resource sharing to differ-
ent types of traffic classes with different priorities — to maximize
revenue of the service provider. It is derived from the linear type of
revenue target function, and closed form globally optimal formula
is presented. The method is computationally inexpensive, while still
producing maximal revenue. Due to the simplicity of the algorithm,
it can operate in the highly nonstationary environments. In addi-
tion, it is nonparametric and deterministic in the sense that it uses
only the information about the number of users and their traffic
classes, not about call density functions or duration distributions.
Also, Call Admission Control (CAC) mechanism is used by hypoth-
esis testing.

Index Terms: Packet scheduling pricing, revenue maximization,

QoS.

I. INTRODUCTION

Packet scheduling discipline is an important factor of a net-
work node. The choice of the discipline impacts the alloca-
tion of restricted network resources among contending flows
of the communication network. Network operators can han-
dle resource reservations by using traffic differentiation and de-
sign different kind of pricing strategies. The open question still
arises: How to put these two issues together. Pricing research in
the networks has been quite intensive during the last years and
also novel queuing algorithms have been proposed, but combi-
nation of them have not been analyzed widely. Next, we will
present summary of the recently made pricing work and after
that we will highlight the mostly used queuing disciplines.

A smart market charging method for network usage is pre-
sented in {1]. This paper studies individual packets’ bid for
transport while the network only serves packets with bids above
a certain (congestion-dependent) cutoff amount. Charges that
increase with either realized flow rate or with the share of the
network consumed by a traffic flow is studied in [2] and [3].
Packet-based pricing schemes (e.g., [4], [5]) have also been pro-
posed as an incentive for more efficient flow control. The fun-
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damental problem of achieving the system optimum that maxi-
mizes the aggregate utility of the users, using only the informa-
tion available at the end hosts, is studied in [6]. They assume that
the users are of elastic traffic and can adjust their rates based on
their estimates of network congestion level. Equilibrium proper-
ties of bandwidth and buffer allocation schemes are analyzed in
[7]. Pricing and link allocation for real-time traffic that requires
strict QoS guarantees is studied, e.g., in [8] and [9]. Such QoS
guarantees can often be translated into a preset resource amount
that has to be allocated to a call at all links in its route through
the network. If the resource is bandwidth, this resource amount
can be some sort of an effective bandwidth (see, e.g., [10] for
a survey of effective bandwidth characterizations and [11] for
similar notions in the multiclass case). In this setting, [12],
[13] propose the pricing of real-time traffic with QoS require-
ments, in terms of its effective bandwidth. Their pricing scheme
can also be called as static one and it has clear implementation
advantages: charges are predictable by end users, evolve in a
slower time-scale than congestion phenomena, and no real-time
mechanism is needed to communicate tariffs to the users.

There is also several research work done with the game-
theoretic models of routing and flow control in communication
networks (e.g., [14]-[191). These papers show conditions for the
existence and uniqueness of an equilibrium. This has allowed,
in particular, the design of network management policies that
induce efficient equilibria [15]. This framework has also been
extended to the context of repeated games in which cooperation
can be enforced by using policies that penalize users who de-
viate from the equilibrium [17]. A revenue-maximizing pricing
scheme for the service provider is presented in [20]. Thus, a
noncooperative (Nash) flow control game is played by the users
(followers) in a Stackelberg game where the goal of the leader
is to set a price to maximize revenue.

Two well-known scheduling algorithms are the packet-by-
packet generalized processor sharing (PGPS) ([21]) and the
worstcase fair weighted fair queueing (WF?2Q) ([22]). The
W F2(Q has been proposed to eliminate PGPS burstiness prob-
lem exhibited in a flow packet departure process. Based on the
fluid traffic model, the generalized processor sharing discipline
provides the delay and buffer occupancy bounds for guarantee-
ing the QoS. The delay bound for the PGPS is provided, e.g.,
in [21], which is equivalent to the weighted fair queuing (WFQ)
[23]. As outlined in [22], the departure process resulting from
packet assignment by a PGPS server could be bursty. To avoid
this problem, a new packet approximation algorithm of the GPS
(i.e., WF?2(Q)) was proposed in [22]. The queueing disciplines
such as PGPS and W F2(Q are based on a timestamp mechanism
to determine the packet service sequence. The timestamp mech-
anism for all packets, however, entails implementation com-
plexity. If a fixed length packet is used, the implementation
complexity due to the timestamp mechanism can be reduced,
in which a round robin discipline such as the weighted round
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Fig. 1. Traffic classification at the output buffers.

robin (WRR) could be used. Although simple to implement by
avoiding the use of timestamp mechanism, the WRR has a larger
delay bound. To solve this problem, several modification ap-
proaches of the WRR have been proposed. As seen in [24] and
[25], the uniform round robin (URR) discipline and the W F2Q
interleaved WRR discipline emulate the W F2Q to determine
the packet service sequence. These scheduling disciplines result
in a more uniform packet departure and a smaller delay bound
than those provided by conventional round robin. Extension to
WRR algorithm for fixed length packets is studied in [26]. They
present a scheduling algorithm for fixed length packets that do
not emulate the W F2(Q). As the timestamp mechanism is not
necessary, the proposed algorithm can be implemented with a
low complexity and low processing delay for high speed net-
works.

Our research differs from the above studies by linking pricing
and queuing issues together; in addition our model does not need
any additional information about user behavior, utility functions,
etc. (like most pricing and game-theoretic ones need). This
paper extends our previous pricing and QoS research, [27]-[30],
to take into account queuing scheduling issues by introducing
dynamic weight tracking algorithm in the scheduler. QoS and
revenue aware scheduling algorithm is investigated in the single
node case. It is derived from Lagrangian optimization problem,
and globally optimal closed form solution is presented.

The rest of the paper is organized as follows. In Section 11,
used pricing scenario is presented and generally defined. Closed
form scheduling algorithm is derived in Section III; in addition,
Call Admission Control (CAC) mechanism as well as some up-
per bounds are presented in this section. Section IV contains
experimental part justifying theorems. Discussions are made in
Section V, and final section contains conclusions of the work.

II. PRICING SCENARIO

Here the pricing scenario is presented in the simplified form.
First, some parameters and notations are defined and com-
mented. Let dj be the minimum processing time of the classifier
for transmitting data from one queue to the output in Fig. 1. For
simplicity it is assumed that the data packets have the same size
b. Therefore their size can be scaled to b = 1. Extensions to the
variable packet sizes do not need essential modifications to the
main theory. The number of service classes is denoted by m.
Literature usually refers to the gold, silver, and bronze classes;

[
4

il
-
L

t

o o

(e [=] [+d -

—7 d ]
|
|
|

REVENUE FUNCTIONS (EUROS/MINUTE)

L
e

-2

SCALED DELAY

Fig. 2. Three hyperbolic tangent type pricing functions. Horizontal axis:
delay. Vertical axis: price.

in this case, m = 3. In each queue, sub-queues can be de-
fined due to the different insertion delays, transmission delays,
etc. of the different packets in the same queue. However, this
is also straightforward extension to our scenario, and therefore
it is beyond the scope of this study. It has only the effect on the
computational complexity, and is shortly discussed in the Sec-
tion V-B. Real processing time (delay) for class ¢ in the packet
scheduler is

d; = Nydo/w;, (H

where w;(t) = w;,i = 1,-+-, m are weights allotted for each
class, and N;(t) = N; is the number of customers in the ith
queue. Here time index ¢ has been dropped for convenience.
The natural constraint for the weights are

w; > 0, 2

and .
i=1

Without loss of generality, only non-empty queues are consid-
ered, and therefore w; # 0,7 = 1,--- m. If some weight is
w; = 1, then m = 1, and the only class to be served has the
minimum processing time dy, if N; = 1. For each service class,
a revenue or pricing function

ri(di) = ri(Nido /w;i + ¢;), )

(euros/minute) is non-increasing with respect to the delay d;.
Here c;(t) = ¢; includes insertion delay, transmission delay,
etc., and here it is assumed to be constant (therefore above-
mentioned sub-queue systems are not considered here). Exam-
ples of pricing functions are given in Figs. 2, 3, and 4. Fig. 2
presents three (m = 3) hyberbolic tangent type functions, while
Fig. 3 presents piecewise linear pricing functions. A benefit of
using hyperbolic tangents is that they are continuously differen-
tiable, and hence adaptive gradient algorithms are quite easy to
develop. However, there are some disadvantages: For analytical
reasons it is difficult to develop optimal revenue maximization
and CAC algorithms. In addition, they are perhaps not tempt-
ing from the point view of customers. Piecewise linear pricing
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Fig. 3. Three piecewise linear pricing functions. Horizontal axis: delay.
Vertical axis: price.

functions, as shown in Fig. 3, seem to be tempting, and study
of those functions are topics of the future research. Our study
concentrates on the case of the simplest functions, namely lin-
ear pricing functions, as shown in Fig. 4. Linear pricing algo-
rithms may perhaps also be used as building blocks for devel-
oping piecewise linear pricing models. Due to the topic, Fig. 4
is commented in more detail. For gold class, the pricing model
ri(d) = —5d + 10 in Fig. 4 means that when the delay d is
small, the price paid by gold class customer is high - maximally
10 units of money. It is natural that for the highest priority class,
constant shift (e.g., ten money units in this case) is selected to
be highest. On the other hand, penalty paid to the highest pri-
ority class customers is also highest; in this case it depends lin-
early on the delay, being —5d. For example, if d = 3, then
r1(d) = r1(3) = —5 x 3+ 10 = —5 units of money. Same ob-
servations hold for silver and bronze classes. For bronze class,
r3(d) = —d + 2 means that the price paid by that class cus-
tomer is maximally 2 units of money. In this case, constant shift
was selected to be lowest. On the other hand, penalty for bronze
class is also lowest, being —d. However, our purpose is not to
make accurate study of the practical realizations of the parame-
ters of the curves, only general parametrical forms of the pricing
functions.

III. REVENUE MAXIMIZATION ALGORITHM

One user in class ¢ pays r;(d;) money units to the service
provider according to the pricing function (4). Because there are
N; customers in the queue ¢, the total price paid by the «th class
customers in unit time step (euros/minute) is N;r;(N;do/w; +
c;). Because there are m classes, the revenue criterion to be
maximized has the form

m
Flwy, - wy) = ZNiri(NidO/wi + ¢), )

=1

under weight constraint (2) and (3). Without loss of generality,
setdy = 1.
As a special case, consider linear revenue model.
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Fig. 4. Three linear pricing functions. Horizontal axis: delay; vertical
axis: price.

Definition 1: The function

ri(t)————rit—}—ki, i=1,---,m, (6)
T > 0, )
ki >0, (3

is called linear pricing function.
Using (4), (5), and (6), we define the revenue F' for linear
pricing functions by Lagrangian as follows:

F = F(wy, - ,wnm)
m N m
= ZNI(—Tl—w—l + kl) 4+ /\(1 — Zwl)
i=1 i i=1
m TZ‘N? m m
= X PNk AL S D )
=1 i=1 i=1
0<w; <1. )

Here the constants ¢; have been dropped out for convenience.
Theorem of closed form solution for optimal weights is as fol-
lows:

Theorem 1: For linear pricing functions, the maximum rev-
enue F is achieved by using the weights

IV
wi= T (10)
i VTN
and it is unique in w; € (0, 1].
Proof: Set partial derivatives of F in (9) to the zero:
oF Tle
= —A=0. 11
811)[ wl2 ( )
It follows that
2
A= =1 m, (12)
Wi
leading to the solution
N
:\/F 1=1,---,m. (13)

w; 3
VA
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Substituting the scaling factor (3)

m
D wi=
11

to the denominator of (13), the closed form solution is obtained
as follows:

:]_,

3 Vi (14)

Vv

=1

VTiN;

VA AL
w; = = : (15)
PO \/JXZ 21 VTN
Because r; > 0 and N; > 0, it is seen from (15) that
1 VAN
1 Ty (16)
wi VTilN;
So
0<w; <1 a7

To prove that this is the only solution in the interval 0 < w; < 1,

we consider second order derivative of F. Due to the constraint
m .

> =1 wr = 1, one obtains from (12)

A= iAwlzzm:”]\;l !
=1 -1 Y
— Z’“ZVI —F+Y Nk (18)
=1 i=1

The right hand side term follows from the fact that the penalty
A(1=37 | w;) vanishes in (9), when the constraint ) ;" w; =
1 is satisfied. Solving A out from (11) using (18), one obtains an
expression

9F N} N2 = 1iN?
- A= - L, 19
E wl2 w? ; w; (19
to the first order derivative. Then second order derivative is
O*F 2 1 -2+ wy;
=N =+ = | = Nf-——=— <0, (20
ap = (- 0 =t )

because r; > 0, N; > 0, and w; € (0, 1]. Therefore, F' is strictly
concave in the interval 0 < w; < 1, having one and only one
maximum. This completes the proof. |
An upper bound for revenue F is obtained:
Theorem 2:

F <Y Nik;. 1)
Proof: Due to the constraint Yo wp=1in(9),
F=2% Nk~ ki, @)
i=1 i=1
is obtained, because r; > 0, N; > 0, and w; > 0. O

Analytical form to the revenue can be expressed solving
weights w; out:

Theorem 3: When optimal weights w; are used according to
Theorem 1, revenue is

2 m
(Z \/_N> +)  Niki.
i=1
Proof: When penalty A(1 — )", w;) in (9) vanishes, F' can
be represented in the form

pe-y

=1 +

(23)

(24)

+ZNk

Substitute optimal weights (10) to (24). Then

>

i=1

= —i\/ENiZ\/r_lNl +ZNiki
i=1 =1 =1

- _(i VEND)?+ Y Nik.
i=1 =1

TN =
F = NEZ’ 1‘/_ +3  Niki
i=1

(25)

O
From (25), one possible constraint in the CAC mechanism is
obtained, namely

m m

~QCVEN)? <Y Niks,

=1 i=1

(26)

that guarantees F' > 0.

Next theorem states optimal number of users, as well as upper
bounds for buffer sizes:

Theorem 4: Upper bounds for buffer sizes are

1 k; )
L

27
5720 2N

? m?
where y = |z] denotes maximum integer y satisfying y < .

Proof: The optimal number of users for fixed weights is
obtained as follows:

oF Tt
— = -2—N;+k =0. 28
o, il + ki (28)
Therefore L wrk
| = i l, lzl?'”vm' (29)
2 71
The second derivative is
82F T
—_—==2—<0 30
T = 2 <O (30)

because r; > 0and w; > 0. Therefore F is strictly concave with
respect to N;, ¢ = 1,---,m having one and only one global
maximum, which is satisfied by (29). Because w; < 1, ¢ =
1,--+,m, then

1k
N < 5=, (31)
2 ’f‘l
for which (27) follows. This completes proof. o

Next another upper bound for revenue is presented:
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Fig. 5. First experiment with no call admission control. Three weights as
a function of time. Horizontal axis: time. Vertical axis: weight value.

Theorem 5: In the case of linear pricing model (4), upper
bound for revenue is

(32)

Proof: Select optimal value for N; in (29), and substitute
it in (9) by using constraint (3). Then

1wk Lwk, N\ _ 1 o wik?
F= Z 2 7 ( Z2 Wi Z) T4 ; - B3
Due to the condition w; < 1, (32) follows. O

Interpretation of (32) is quite obvious: k; increases upper
limit, while r; decreases it.

CAC mechanism can be made by simple hypothesis testing
without assumptions about call or dropping rates. Let the state
(number of packets) at the moment ¢ be N;(¢t), t = 1,-

Let the new hypothetical state at the moment ¢ + 1 be NV, (t + 1)
i = 1,---,m, when one or several calls appear. In hypothesis

testing, Theorem 3 is applied as follows:

m 2 m
- (Z \/ENi(t)> + ZNi(t)ki. (34)
=1

i=1

2 m
F(t+1) = (Z\/_N t+1)> +> Ni(t+1)k;. (35)

i=1

If F(t) > F(t), then call is rejected, otherwise it is accepted.
Computational complexity of the algorithm can also be de-
rived by exploiting Theorem 3. When no calls or droppings
happen, weights are not adjusted. When call appears, O(m)
multiplications and additions are performed, as seen from (23).

IV. EXPERIMENTS

In all the experiments, cails and durations are Poisson and
exponentially distributed, respectively. In addtition, number of
classes is m = 3. Call rates per unit time for gold, silver, and
bronze classes are vy = 0.1, g = 0.2, and a3 = 0.3, re-
spectively. Duration parameters (decay rates) are 5, = 0.010,
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Fig. 6. First experiment with no call admission control. Delays as a func-
tion of time. Horizontal axis: time. Vertical axis: delay. Solid, dashed,
and dash-dotted curves correspond to gold, silver, and bronze class,
respectively.

B2 = 0.007, and G5 =
tions for durations are

filt) = Bie P,

The number of unit times in the experiments was T = 3000.
Experiment 1. In the first experiment, three service classes have
the pricing functions

0.003, where probability density func-

i=1,2,3 t>0. (36)

r1(t) = —5t + 200, 37
for gold class,

ro(t) = -2t + 100, (38)
for for silver class, and

r3(t) = —0.5¢ + 50, (39)

for bronze class. Fig. 5 shows the evolutions of three weights
wi {t), wo(t), and wz(t) as a function of time, when no CAC
mechanism is used. Fig. 6 shows the corresponding delays.
Solid, dashed, and dash-dotted curves correspond to the gold,
silver, and bronze class, respectively. It is not surprising that
the delays of gold class customers are lowest, while delays of
bronze class customers are largest. Number of users N;(t) are
shown in Fig. 7. Due to the arrival and duration rates, number
of users is lowest in gold class, while number of users is largest
in bronze class. Solid, dashed, and dash-dotted lines show up-
per bounds of the different buffers according to the Theorem 4.
However, because CAC mechanism is not used, N,(t) may be
larger than the upper bounds. It is seen that N, (¢} achieves the

theoretical value
a;

B’
stated in Little’s Theorem, i.e., a1/81 = 10, aa/B2 = 29, and
as/0s = 100. In Fig. 8, revenue as well as two upper bounds
are shown. Lowest curve (solid) is the revenue achieved by the
closed form method with no CAC. It becames negative. Dashed
curve shows the upper limit >, N;k; as stated in Theorem 2,
and the solid line illustrates the upper bound of Theorem 3, and

E[N:(t)] = (40)
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it is constant due to the invariance of r; and k; in that experi-
ment. The experiment is continued by using CAC mechanism.
The parameters remain the same. Figs. 9-12 show weights, de-
lays, number of users, and revenues, respectively. It is notice-
able that the upper bounds are larger than the realized number
of users, as well as revenue, and what is important is that the
revenue is now positive, as seen from Fig. 12.

Experiment 2, In the second experiment, the pricing functions
are

r1(t) = —10¢t + 200, (41
for gold class,
ro(t) = —4¢ + 100, 42)
for for silver class, and
Tg(t) = —{+ 50, (43)

for bronze class, i.e., penalty coefficients r; are larger compared
to those in the first experiment. Figs. 13 and 14 show number

weights w1, w2, w3

- L L
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time

Fig. 9. First experiment with call admission control. Three weights as a
function of time. Horizontal axis: time. Vertical axis: weight value.
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of users and revenue, respectively, for the algorithm that does
not use CAC mechanism. The traffic profiles remain the same,
i.e., the number of users N;(t) are the same due to the lack of the
CAC mechanism, as seen by comparing Figs. 7 and 13. Revenue
remains negative, and it is smaller than in the experiment 1, as
seen by comparing Figs. 8 and 14. The reason that the penalty
factors r; are now larger. Figs. 15 and 16, show number of
users, and revenue, respectively, for the algorithm that does use
CAC mechanism. Number of users as well as revenue are below
upper limits, and revenue becomes smaller, as seen by compar-
ing solid curves of Figs. 12 and 16.

Experiment 3. In this experiment, the pricing functions are

r1(t) = —5t + 2000, (44)
for gold class,

ro(t) = —2t + 1000, 45)
for for silver class, and

ra(t) = —0.5t + 400, (46)
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for bronze class, i.e., gain coefficients k; are larger than in the
first experiment. Figs. 17 and 18 show number of users and rev-
enue, respectively, for the algorithm that does use CAC mech-
anism. In fact, k; is now so large that the algorithm accepts in
practice every call, and this is seen from Fig. 17, i.e., N;(¢) is
approximately the same as stated by Little’s formula. Fig. 18
tells us that the revenue almost achieves the upper limit of The-
orem 2 due to the dominating role of ), N;k; in Theorem 3.

V. DISCUSSION AND FUTURE WORK

A. Properties of the Closed Form Scheduling Algorithm

Here, we present conclusions from our approach as well as
experiments. Also some future topics are discussed. The con-
clusions are as follows:

e We have analytically shown that in the case of linear pricing
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Fig. 13. Second experiment with no call admission control. Number of
users as a function of time. Horizontal axis: time. Vertical axis: num-
ber of users. Solid, dashed, and dash-dotted curves correspond to
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Fig. 14. Second experiment with no call admission control. Revenue as
a function of time. Horizontal axis: time. Vertical axis: revenue. Low-
est curve: realized revenue; middle curve (dashed): upper bound
5, Nik;; solid line: 0.25 3, k2 /r;.

scenario, revenue has unique maximum in the weight interval
w; € (0, 1]. Proof was based on the closed form solution of
the weights as well as concavity of the revenue function in
the interval w; € (0, 1].

e The proposed weight updating algorithm is computationally
inexpensive in our scope of study.

o Experiments clearly justify the performance of the algorithm.
For example, theorems for upper bounds hold, and revenue
curves are positive.

e Some of the statistical and deterministic algorithms presented
in the literature assume quite strict a priori information about
parameters or statistical behavior such as call densities, du-
rations or distributions. However, such methods usually are
- in addition to being computationally complex - not robust
against erroneous assumptions or estimates. On the contrary,
our algorithm is deterministic and non-parametric, i.e., it uses
only the information about the number of customers, and thus
we believe that the robustness makes it a competitive candi-
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date in practical environments.

¢ Also, CAC mechanism can be used in the context of the al-
gorithm. It is based on the hypothesis testing, and is compu-
tationally quite simple.

o Here, we investigated only the single node case. Multinode
case is a much more challenging problem.

o The algorithm used the same packet sizes. However, it is
quite straightforward to develop the version, which can han-
dle different packet sizes.

General conclusion is that the linear pricing scenario is quite

simple, perhaps tempting, and practical. However, we believe

that more practical pricing scheme should be based on piecewise
linear model. Studies are made in that direction.. Especially flat
pricing scenario is an interesting topic of study.

B. Extensions of the Scenario

As we mentioned earlier, in the more general case, every traf-
fic flow has different routes, and therefore different delay con-
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stants ¢;;. For reducing the number of parameters, one can ap-
proximate

m n

F= ZZNijri(Nide/wi+cij)7 (47)

i=1 j=1
where NV;; is the number of customers having (approximately)
constant delay ¢;;. However, in the most accurate criterion, there
are different weights for different user numbers N;;, and rev-
enue criterion has the form

F=Y"%" Nyri(Nijdo/wij + ci5).

i=1 j=1

(48)

But we see that this is quite a trivial extension, because (48) can
be re-organized to the form

i=1

(49)
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=T = =T =T, (50)
Tn41 :Tn+2:"'='r2nzf2a (51)
Cij = Ela 1= 17 , M, (52)

N; = N(é—l)n+j- (53)

Thus, only computational complexity increases by the factor n
to O(mn) multiplications and additions, where n is number of
different quantized delay values. Because delays are continuous,
an approximation

61 € [OvA)v (54)
¢ € [A,2A), (55)
én € [(n — 1}A, nd), (56)

must be made. Here time A (seconds) depends on the applica-
tion.

To see that the basic closed form solution (10) does not need
essential modifications, when the delays ¢; are included in the
revenue I, we write F' in the linear scenario as follows:

ri(ds) = ri(N;/w; + ¢;), (57)
F = ZNi[“ri(Ni/wi+ci)+ki]
i=1
m m
TiNz-z
= — Z —wl— + z:]\/vl(ktZ — Tic,-)
=1 i=1
N2 S -
= =Y "4 Y Nk, (58)
-1 Wi i=1

where change of variable I~€i = k; — r;c; has been made. This
is essentially same as (9). However, the formula is important,
because it gives us constraint

(39

ki > TiCi mazx
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to avoid negative revenue. Most straightforward solution for
avoiding I’ < 0 is to use piecewise linear model. One candi-
date should be to continuously use (10) updating rule (which
is based on the assumption that negative revenue is possible),
while minimal value to the pricing functions are selected to be
r;(d) = 0, i.e., service provider does not need to pay money to
the customer, but give free service when delay tends to be too
large. Fig. 19 illustrates the corresponding pricing functions.

VI. CONCLUSIONS

In this paper, we introduced a closed form scheduling algo-
rithm, which was derived from revenue target function by La-
grangian optimization approach. The experiments demonstrated
the revenue maximization ability of the algorithm, while still al-
locating delays in a fair way.

In the future work, multinode case is investigated. It is im-
portant to develop such a distributed approximation, which does
not suffer the curse of dimensionality and computational com-
plexity of the optimal global approach. Also different kind of
pricing models will be studied. We have also started to work
with Linux routers, and the goal of the task is to implement pre-
sented algorithm to a real router environment.
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