Regulation of Atrial $Ca^{2+}$ Signaling by Inositol 1,4,5-Trisphosphate Receptor and Mitochondria

이노시톨 삼인산 수용체와 미토콘드리아에 의한 심방 근세포 $Ca^{2+}$ 신호전달의 조절

  • Lee , Hyang-Jin (College of Pharmacy, Chungnam National University) ;
  • Cleemann , Lars (Department of Pharmacology, Georgetown University Medical Center) ;
  • Morad , Martin (Department of Pharmacology, Georgetown University Medical Center) ;
  • Woo, Sun-Hee (College of Pharmacy, Chungnam National University)
  • Published : 2004.01.01

Abstract

Atrial myocytes have two functionally separate groups of ryanodine receptors (RyRs): those at the periphery colocalized with L-type $Ca^{2+}$channels (DHPRS) and those a t the cell interior not associated with DHPRs. $Ca^{2+}$ current ($I_{ca}$) directly gates peripheral RyRs on action potential and the subsequent peripheral $Ca^{2+}$ release propagates into the center of atrial myocytes. The mechanisms that regulate the $Ca^{2+}$+ propagation wave remain Poorly understood. Using 2-D confocal$Ca^{2+}$ imaging, we examined the role of inositol 1,4,5-trisphosphate receptor (IP $_3R$) and mitochondria on ($I_{ca}$)- gated local $Ca^{2+}$ signaling in rat atrial myocytes. Blockade of IP $_3R$ by xestospongin C (XeC) partially suppressed the magnitudes of I ca-gated central and peripheral $Ca^{2+}$ releases with no effect on $I_{ca}$. Mitochondrial staining revealed that mitochondria were aligned with ${\thickapprox}2-{\mu}m$ separations in the entire cytoplasm of ventricular and atrial myocytes. Membrane depolarization induced rapid mitochondrial $Ca^{2+}$ rise and decay in the cell periphery with slower rise in the center, suggesting that mitochondria may immediately uptake cytosolic $Ca^{2+}$, released from the peripheral SR on depolarization, and re-release the $Ca^{2+}$ into the cytosol to activate neighboring central RyRs. Our data suggest that the activation of IP $_3R$ and mitochondrial $Ca^{2+}$ handing on action potential may serve as a cofactor for the $Ca^{2+}$ propagation from the DHPR-coupled RyRs to the DHPR-uncoupled RyRs with large gaps between them.

Keywords

References

  1. Fabiato, A. : Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85, 291 (1985) https://doi.org/10.1085/jgp.85.2.291
  2. Barcenas-Ruiz, L. and Wier, W. G. : Voltage dependence of intracellular $[Ca^{2+}]_i$ transients in guinea pig ventricular myocytes. Circ. Res. 61, 148 (1987).
  3. Cannell, M. B., Berlin, J. R. and Lederer, W. J. : Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238, 1419 (1987) https://doi.org/10.1126/science.2446391
  4. Nabauer, M., Callewaert, G., Cleemann, L. and Morad, M. : Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800 (1989) https://doi.org/10.1126/science.2543067
  5. Franzine-Armstrong, C., Protasi, F. and Ramesh, V. : Shape, size, and distribution of $Ca^{2+}$ release units and couplons in skeletal and cardiac muscles. Biophys. J. 77, 1528 (1999) https://doi.org/10.1016/S0006-3495(99)77000-1
  6. Carl, S. L., Felix, K., Caswell, A. H., Brandt, N. R., Ball, W. J. Jr., Vaghy, P. L., Meissner, G. and Ferguson, D. G. : Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J. Cell. BioI. 129(3), 672 (1995)
  7. Huser, J., Lipsius, S. L. and Blatter, L. A. : Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J. Physiol. 494(Pt 3), 641 (1996)
  8. Kockskamper, J., Sheehan , K. A., Bare, D. J., Lipsius, S. L., Mignery, G. A. and Blatter, L. A. : Activation and propagation of $Ca^{2+}$ release during excitation-contraction coupling in atrial myocytes. Biophys. J. 81(5), 2590 (2001)
  9. Woo, S. H., Cleemann, L. and Morad, M. : $Ca^{2+}$ current-gated focal and local $Ca^{2+}$ release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J. Physiol. 543(Pt 2), 439 (2002)
  10. Mackenzie, L., Bootman, M. D., Laine, M., Berridge, M. J., Thuring, J., Holmes, A., Li, W. H. and Lipp, P. : The role of inositol 1,4,5-trisphosphate receptors in $Ca^{2+}$ signalling and the generation of arrhythmias in rat atrial myocytes.J. Physiol. 541(Pt 2), 395 (2002)
  11. Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B. and Thomas, A. P. : Decoding of cytosolic calcium oscillation in the mitochondria. Cell 82, 415 (1995). https://doi.org/10.1016/0092-8674(95)90430-1
  12. Straub, S. V., Giovannucci, D. R. and Yule, D. I. : Calcium wave propagation in pancreatic acinar cells: Functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria. J. Gen. Physiol. 116, 547 (2000)
  13. Montero, M., Alonso, M. T., Carnicero, E., Cuchillo-Ibanez, I., Albillos, A., Garcia, A. G., Garcia-sancho, J. and Alvarez, J. : Chromaffin-cell stimulation triggers fast millimolar mitochon-drial $Ca^{2+}$ transients that modulate secretion. Nature Cell Biol. 2, 57 (2000). https://doi.org/10.1038/35000001
  14. Hamil, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J. : Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391(2), 85 (1981)
  15. Babcock, D. F., Herrington, J., Goodwin, P. C., Park, Y. B. and Hille, B. : Mitochondrial participation in the intracellular $Ca^{2+}$ network. J. Cell Biol. 136(4), 833 (1997)