DOI QR코드

DOI QR Code

Mechanical Behavior of Directionally Solicified (Y2O3)ZrO2/Al2O3 Eurtctic Fibers

  • Park, Deok-Yong (Dapartment of Applied Maberials Engineering, Hanbat National University) ;
  • Yang, Jenn-Ming (Department of Materials Seience and Engineering, University of California)
  • Published : 2004.01.01

Abstract

The microstructural features and mechanical behavior of directionally solidified $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fibers after extended beat treatment in oxidizing environment were investigated. The fiber was grown continuously by an Edge-defined Film-fed Growth (EFG) technique. The microstructure was characterized using X-Ray Diffraction (XRD) and Scanning Electron Microscopy(SEM). The microstructure of the fiber in the as-fabricated state consists of highly oriented colonv and fine lamellar microstructure along the fiber axis. Tensile strength of the $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fiber remained unchanged with heat treatment at temperatures between $1200^{\circ}C$ and $1500^{\circ}C$ up to 300h. The weibulls modulus remained fairly constant after extended thermal exposure. The fracture toughness and crack propagation behavior were investigated. The fracture toughness ($K_{1C}$) of the $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fiber in the as-fabricated state were measured to be 3.6 ${\pm}$ 0.5 MPa${\cdot}m^{1/2}$ by an indentation technique and 2.2 ${\pm}$ 0.2 MPa${\cdot}m^{1/2}$ by assuming elliptical flaw of a semi-infinite solid, respectively. The $(Y_2O_3)ZrO_2/Al_2O_3$ eutectic fiber showed a radial (Palmqvist) crack type and exhibited an orthotropic crack growth behavior under 100 g load.

Keywords

References

  1. S. A. Newcomb and R. E. Tressler, 'Slow Crack Growth in Sapphire Fibers at $800^\circ$ to $1500^\circ$C,' J. Am. Cerem. Soc., 76 [10] 2505-12 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03973.x
  2. J. E. Sheehan, J. Sigalovsky, J. S. Haggerty and J. R. Porter, 'Mechanical Properties of MgAl_2O_4 Single Crystal Fibers,' Ceram. Eng. Sci. Proc., 14 [7-8] 660-70 (1993) https://doi.org/10.1002/9780470314180.ch91
  3. K. J. McClellan, H. Sayir, A. H. Heuer, A. Sayir, J. Haggerty and J. Sigalovsky, 'High-Strength, Creep-Resistant Y_2O_3-Stabilized Cubic-ZrO_2 Single Crystal Fibers,' Ceram. Eng. Sci. Proc., 14 [7-8] 651-9 (1993) https://doi.org/10.1002/9780470314180.ch90
  4. G. S. Corman, 'Strength and Creep of Single Crystal YAG Fibers'; presented at the 94^t^h Annual Meeting of the American Ceramic Society, Minneapolis, MN, April 12-16 (1992)
  5. S. Kim, S. Kim and W. C. LaCourse, 'ZrO_2 Ceramic Fiber Fabrication by Sol-Gel Processing,' J. Kor. Ceram. Soc., 27 [6] 824-8 (1990)
  6. I.-H. Song, S.-U. Kim and M.-S. Yoon, 'Fabrication of Zirconia Ceramic Fiber by Sol-Gel Processing: (II) The Doping Effect of CaO on Their Microstructure and Phase Transition,' J. Kor. Ceram. Soc., 28 [10] 819-23 (1991)
  7. C. Whang, H. Eun and H. Kwon, 'Fabrication of Y_2O_3-ZrO_2 and CaO-ZrO_2 Fibers by Sol-Gel Process and Their Phase Characterization by Raman Microprobe,' J. Kor. Ceram. Soc., 31 [1] 104-14 (1994)
  8. Deok-Yong Park, Jenn-Ming Yang and J. M. Collins, 'Coarsening of Lamella Microstructures in Directionally Solidified Yttrium luminate/Alumina Eutectic Fiber,' J. Am. Ceram. Soc., 84 [12] 2991-96 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb01126.x
  9. D.-Y. Park and J.-M. Yang, 'Effect of the Microstructure on the Mechanical Properties of a Directionally Solidified Y_3Al_5O_12/Al_2O_3 Eutectic Fiber,' J. Mater. Sci., 36, 5593-601 (2001) https://doi.org/10.1023/A:1012561531552
  10. D.-Y. Park and J.-M. Yang, 'Fracture Behavior of Directionally Solidified CeO_2- and Pr_2O_3-doped Y_3Al_5O_12/Al_2O_3 Eutectic Composites,' Mater. Sci. Eng., A332, 276-84 (2002)
  11. S.C. Farmer, A. Sayir and P. O. Dickerson, 'Mechanical and Microstructural Characterization of Directionally Solidified Alumina-Zirconia Eutectic Fibers,' in In Situ Composites: Science and Technology. The Metallurgical Society, Warrendale, PA, p.167 (1993)
  12. E. L. Courtright, J. S. Haggerty and J. Sigalovsky, 'Controlling Microstructures in ZrO_2(Y_2O_3)-Al_2O_3 Eutectic Fibers,' Ceram. Eng. Sci. Proc., 14 [7-8] 671-81 (1993) https://doi.org/10.1002/9780470314180.ch92
  13. H. E. Bates, 'EFG Growth of Alumina-Zirconia Eutectic Fiber,' Ceram. Eng. Sci. Proc., 13 [7-8] 190-7 (1992)
  14. T. Mah, T. A. Parthasarathy, M. D. Petry and L. E. Matson, 'Processing, Microstructure, and Properties of Al_2O_3-Y_3Al_5O_1_2 (YAG) Eutectic Fibers,' Ceram. Eng. Sci. Proc., 14 [7-8] 622-38 (1993) https://doi.org/10.1002/9780470314180.ch88
  15. Jenn-Ming Yang, S. M. Jeng and Sekyung Chang, 'Fracture Behavior of Directionally Solidified Y_3Al_5O_1_2/Al_2O_3 Eutectic Fiber,' J. Am .Ceram. Soc., 79 [5] 1218-22 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08575.x
  16. S. C. Famer, A. Sayir, P. O. Dickerson, S. L. Draper, 'Microstructural Stability and Strength Retention in Directionally Solidified Al_2O_3-YAG Eutectic Fibers,' Ceram. Eng. Sci. Proc., 16 [5] 969-76 (1995) https://doi.org/10.1002/9780470314784.ch40
  17. G. R. Fischer, L. J. Manfredo, R. N. McNally and R. C. Doman, 'The Eutectic and Liquidus in the Al_2O_3-ZrO_2 System,' J. Mater. Sci. 16 (1981) 3447-51 https://doi.org/10.1007/BF00586307
  18. W. D. Tuohig and T. Y. Tien, J. Amer. Ceram. Soc., 63 [9-10] 595-6 (1980) https://doi.org/10.1111/j.1151-2916.1980.tb10772.x
  19. C. O. Hulse and J. A. Batt, ONR Report AD-781955 (1974)
  20. J. Echigoya, Y. Takabayashi, H. Suto, M. Ishigame, 'Structure and Crystallography of Directionally Solidified Al_2O_3-ZrO_2-Y_2O_3 Eutectic by the Floating Zone Melting Method,' J. Mater. Sci. Lett., 5, 150-2 (1986) https://doi.org/10.1007/BF01672029
  21. A. G. Evans and E. A. Charles, 'Fracture Toughness Determinations by Indentation,' J. Am. Ceram. Soc.-Discussion and Notes, 59 [7-8] 371-2 (1976) https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
  22. B. R. Lawn and E. R. Fuller, 'Equilibrium Penny-Like Cracks in Indentation Fracture,' J. Mater. Sci., 10, 2016-24 (1975) https://doi.org/10.1007/BF00557479
  23. A. G. Evans, in: R. C. Bradt, D. H. P. Hasselman and F. F. Lang (Ed.), 'Fracture Mechanics of Ceramics,' Plenum Press, NY, p. 17 (1974)
  24. J.-M. Yang and X. Q. Zhu, 'Thermo-mechanical Stability of Directionally Solidified Al_2O_3-ZrO_2(Y_2O_3) Eutectic Fibers,' Script. Mater., 36 [9] 961-6 (1997) https://doi.org/10.1016/S1359-6462(96)00472-1
  25. R. W. Hertzberg (Ed.), Deformation and Fracture Mechanics of Engineering Materials, the 4th ed. John Wiley & Sons Inc., p. 347 (1996)
  26. A. G. Evans and T. R. Wilshaw, 'Quasi-Static Solid Particle Damage in Brittle Solids-I. Observations, Analysis and Implications,' Acta Metall., 24, 939-56 (1976) https://doi.org/10.1016/0001-6160(76)90042-0
  27. B. Lawn and R. Wilshaw, 'Indentation Fracture: Priciples and Applications,' J. Mater. Sci. 10, 1049-81 (1975) https://doi.org/10.1007/BF00823224
  28. B. Lawn, 'Fracture of Brittle Solids,' Cambridge University Press, Cambridge, U.K., Chap. 8 (1993)
  29. D. Tabor, 'Hardness of Metals,' Clarendon, Oxford, U.K. (1951)
  30. H. E. LaBelle Jr. and A. I. Mlavsky, 'Growth of Controlled Profile Crystals from the Melt: Part I - Sapphire Filaments,' Mat. Res. Bull. 6, 571-80 (1971) https://doi.org/10.1016/0025-5408(71)90006-7
  31. H. E. LaBelle Jr., 'EFG, the Invention and Application to Sapphire Growth,' J. Cryst. Growth, 50, 8-17 (1980) https://doi.org/10.1016/0022-0248(80)90226-2
  32. D. K. Shetty, A. R. Rosenfield, W. H. Duckworth, 'Indenter Flaw Geometry and Fracture Toughness Estimates for a Glass-Ceramic,' J. Am. Ceram. Soc. 68 [10] C-282 - C-284 (1985)
  33. A. Sayir, in: A. Pechenik, R. K. Kalia and P. Vashishta (Ed.), 'Directional Solidification of Eutectic Ceramics,' in Computer-Aided Design of High-Temperature Materials, Oxford University Press, Oxford, U.K. (1999)
  34. F. L. Kennard, R. C. Bradt and V. S. Stubican, 'Directional Solidification of the ZrO_2 -MgO Eutectic,' J. Am. Ceram. Soc., 57 [10] 428-31 (1974) https://doi.org/10.1111/j.1151-2916.1974.tb11374.x
  35. W. Weibull and R. Swed, Acad. Eng. Sci. Pro., 151, 1 (1939)
  36. K. Trustrum and A. De S. Jayatilaka, 'On Estimating the Weibull Modulus for a Brittle Material,' J. Mater. Sci., 14, 1080-4 (1979) https://doi.org/10.1007/BF00561290
  37. G. de With and J. E. D. Parren, 'Translucent Y3Al5O12 Ceramics: Mechanical Properties,' Solid State Ionics, 16, 87-94 (1985) https://doi.org/10.1016/0167-2738(85)90028-1
  38. G. de With, 'Fracture of Translucent Alumina: Temperature Dependence and Influence of CaO Dope,' J. Mater. Sci., 19, 2195-202 (1984) https://doi.org/10.1007/BF01058095
  39. D. K. Shetty, I. G. Wright, P. N. Mincer and A. H. Clauer, 'Indentation Fracture of WC-Co Cermets,' J. Mater. Sci., 20, 1873-82 (1985) https://doi.org/10.1007/BF00555296
  40. H. E. Exner, 'The Influence of Sample Preparation on Palmqvist's Method for Toughness Testing of Cemented Carbides,' Trans. Met. Soc. AIME, 245, 677-83 (1969)
  41. J. Echigoya, Y. Takabayashi and H. Suto, 'Hardness and Fracture Toughness of Directionally Solidified Al_2O_3-ZrO_2(Y_2O_3) Eutectics,' J. Mater. Sci. Lett. 5, 153-4 (1986) https://doi.org/10.1007/BF01672030
  42. D. J. Clinton and R. Morrell, 'The Hardness of Alumina Ceramics,' Brit. Ceram. Proc., 34, 113-27 (1984)
  43. R. K. Viswanadham and J. D. Venables, 'A Simple Method for Evaluating Cemented Carbides,' Metall. Trans. A, 8A, 187-91 (1977)