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ON THE HYERS-ULAM-RASSIAS STABILITY OF A MODIFIED
ADDITIVE AND QUADRATIC FUNCTIONAL EQUATION

KiL-WouNG JuN, HARK-MANN KiM, AND DON O LEE

ABSTRACT. In this paper, we solve the general solution of a modified additive and
quadratic functional equation f(z + 3y) +3f(z —y) = f(z —3y) +3f(z + y) in
the class of functions between real vector spaces and obtain the Hyers-Ulam-Rassias
stability problem for the equation in the sense of Givruta.

1. INTRODUCTION

In 1940, Ulam [17] raised a question concerning the stability of group homomor-
phism:
Let G; be a group and let G2 be a metric group with the metric
d(-,-). Given € > 0, does there exist a § > 0 such that if a function
f : G1 = G satisfies the inequality d(f(zy), f(z)f(y)) < ¢ for all
z,y € G1, then there exists a homomorphism H : G; = G5 with
d(f(z),H(z)) < € for all z € G1?

In other words, we are looking for situations when the homomorphisms are stable,
i. e., if a mapping is almost a homomorphism, then there exists a true homomorphism
rear it.

2

It is easy to see that the quadratic function f(z) = cz* on real field is a solution

of the following equation:

flz+y)+ flz—y) =2f(z) + 2f(y) (1.1)

So, it is national that the equation (1.1) is called a quadratic functional equation.
In particular, every solution of the quadratic equation (1.1) is said to be a quadratic
function. It is well known that a function f between real vector spaces is quadratic if
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and only if there exists a unique symmetric biadditive function B such that f(z) =
B(z,z) for all z (see Aczél & Dhombres [1], Kannappan [14]). The biadditive

function B is given by

B(z,y) = 7(f(z+3) - f(z ~ 1)) (12)

The case of approximately additive functions was solved by Hyers [7] and gen-
eralized by Rassias [15]. During the last decades, the stability problems of several
functional equations have been extensively investigated by a number of authors
Baker (2], Hyers, Isac & Rassias [8, 9], Hyers & Rassias (10], Jun & Kim [12], Ras-
sias [16]. A stability problem for the quadratic functional equation (1.1) was solved
by a lot of authors Czerwik [4], Grabiec [6], Jung [13]. Further, Jun & Lee [11]
proved the generalized Hyers-Ulam stability of the pexiderized quadratic equation
(1.1).

Now, we investigate the following new additive and quadratic functional equation,

flz+3y) +3f(z —y) = f(z — 3y) + 3f(z +y). (1.3)

In this paper, we obtain the general solution of equation (1.3) in the class of
functions between real or complex vector spaces and we establish the Hyers-Ulam-

Rassias stability problem for the equation (1.3) in the sense of G&vruta.

2. GENERAL SOLUTION OF (1.3)

We here present the general solution of the functional equation (1.3).

Theorem 2.1. Let X andY be real vector spaces. A function f : X — Y satisfies the
functional equation (1.3) if and only if there exist functions Q@ : X =Y, A: X -Y
and a constant c in'Y such that f(z) = Q(z) + A(z) + ¢ for all z € X, where Q is
quadratic, and A is additive.

Proof. We first assume that f is a solution of the functional equation(1.3).

Let A(z) := 3[f(z) - f(—z)] and Q(z) := L[f(z)+ f(—z)] - f(0). Then it follows
that A(0) = 0, A(—z) = —A(z) and Q(0) = 0, Q(—z) = Q(z). Since f satisfies the
functional equation (1.3), we get that

Az +3y) + 3A(z — y) = A(z — 3y) + 3A(z + v) (2.1)
Q(z +3y) +3Q(z — y) = Q(z — 3y) + 3Q(z + y) (2.2)

for all z,y € X.
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Now we prove that A is additive.
Putting y = z and z = 0 in (2.1), separately, we have A(2z) = 2A(z) and
A(3y) = 3A(y).
Interchanging = and y in (2.1) and rewriting the resulting equation, we get
ABz +y) + A3z — y) = A(3z + 3y) + A(3z — 3y) (2.3)
forall z,y € X.
From (2.3), we deduce
A(u)+ A(w) = AQ2u —v) + A(2v — u) (2.4)

for all u,v € X.
Replacing y by —2z + y in (2.3) and z by = — 2y in (2.1), we get

Alz+y) + A(Bz —y) =3A(—z +y) + 343z — y) (2.5)
Alz +y) + 3A(z — 3y) = A(z — 5y) + 3A(z — y) (2.6)

for all z,y € X. Using (2.5) and (2.6), one obtains
A5z — y) + A(z — 5y) = ~6A(z — y) + 3A(3z — y) + 3A(x — 3y) (2.7)

for all z,y € X. Applying the relation (2.4) to the left hand side of (2.7), we have
ABz +y) — Az + 3y) = —24A(z —y) + A(3z — y) + A(z — 3y). (2.8)
Replacing y by —y in (2.8), we have
A(Bz —y) — A(z — 3y) = —2A(z + y) + A3z + y) + A(z + 3y). (2.9)
From (2.8) and (2.9), we arrive at

ABz+y)— ABz —y) = Az +y) — A(z — y). (2.10)
Adding (2.10) to (2.3), we get
ABBz +y) + A(—=z +y) = A(2z + 2y). (2.11)

Letting @ = 3z +y and 8 = —z + y in (2.11), then we see
Ala) + A(B) = A(a + B).

Therefore A is an additive.

Next, we show that @ is quadratic. By putting y = x and y = § in (2.2),
respectively, we see that Q(2z) = 4Q(z) and Q(3z) = 9Q(z).

Interchanging z and y in (2.2), we get

QBz +y) +3Q(xr —y) = QB8z — y) + 3Q(z + y) (2.12)
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for all z,y € X.
Replacing 2 by 2z 4+ y in (2.2) and y by = + 2y in (2.12), respectively, we get

Q(z +2y) +3Q(z) = Q(z — y) + 3Q(z + y) (2.13)
Q22 +y) +3Q(y) = Qz —y) +3Q(z +y) (2.14)

forall z,y € X.
Therefore, we have the following crucial equation from (2.13) and (2.14)

Q(2z +y) — Q(z + 2y) = 3Q(z) — 3Q(y) (2.15)

for all z,y € X.
Now utilizing (2.15) one obtains the following two relations

Qe+y) - Q- =20 (3 + 1) - 3062,
Qe -3)- Qe +%) =30 (3~ 1) - 1=,

Since Q(2z) = 4Q(z), Q(3z) = 9Q(z) for all z € X, adding the above two relations

we get
Qz+y)+Qz —y) +6Q(z) = Q(2z +y) + Q(2z — y), (2.16)

which is equivalent to the original quadratic functional equation Q(z+y)+Q(z—y) =
2Qz) + 2Q(y) Chang & Kim [3]. Therefore, Q is quadratic.

That is, if f: X — Y satisfies the functional equation (1.3), then f(z) = Q(z) +
A(z) + f(0) for all z € X, where Q is quadratic and A is additive.

Conversely, if there exist functions @ : X - Y, A: X — Y and a constant c in
Y such that f(z) = Q(z) + A(z) + ¢ for all z € X, where Q is quadratic and A4 is
additive, then it is obvious that f satisfies the equation (1.3). O

3. STABILITY OF (1.3)

Throughout this section X and Y will be a real normed linear space and a real

Banach space, respectively. Given f: X — Y, we set
Df(z,y) == f(z+3y) +3f(x —y) — f(z - 3y) ~ 3f(z +y)

for all z,y € X.
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Let ¢ : X x X — [0,00) be a mapping satisfying one of the conditions (A), (B)
and one of the conditions (C), (D):

(o9}

W By =Y e(@e 2 y) < oo
k°=00

(8) @ale,v) = Y, 4 (g, ) < o0
Ic°=ol ,

©) Uie,y) = ey, 24 ly) < oo

2k+1

NgERE

T Y
(D) Vo (z,y) = PG girr) < ®

b
I
-

for all z,y € X.
One of the conditions (A), (B) will be needed to derive a quadratic function and

one of the conditions (C), (D) will be needed to derive an additive function in the
following theorem.

Theorem 3.1. If a function f : X — Y satisfies

I1Df(z, ¥ < e(z,y) (3.1)

for all z,y € X. Then there erist a unique quadratic function Q@ : X — Y and a
unique additive function A: X — 'Y satisfying the equation (1.3) such that

1(2) - Q(z) = A@) = FO) < 55 [@i(e, ) + Bi(~3, ~2)]
+ %[‘Il](:r,m) + ¥,(—z, —x)],

[Z2EIED Gy - 500)|| < 55 [@itar2) + @iz, 2],

and

[ o) s+ os-n )

forallz e X and fori= 1or 2, j= 1 or 2
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The functions @ and A are given by

[Q(w) = nll)m ﬂ%—%ﬂ if A holds,
Alz) = nIH‘;, [2"2)f(-2") if C holds,
| Ale) = lim on{EJCH) if D holds

forallz € X.

Proof. Let fi : X — Y be a function defined by fi(z) := (1/2)[f(z) + f(—z)] — f(0)
for all z € X. Then f;(0) =0, fi(z) = fi(—z), and

DAz, Il = [lfilz+3y) +3fi(z —y) - filz - 3y) — 3filz + y)l|
< (1/2)[e(=,y) + (=2, —y)] (3-2)
for all z,y € X. Putting y = « in (3.2) yields
[ f1(4z) — 4A12)|| < (1/2)[p(z, z) + o(—2, —z)] (3.3)
forall z € X.

Case 1. Assume that ¢ satisfies the condition (A). Dividing both sides of (3.3)
by 4 and letting § for z, we have

|282) - @) < 5le(5.5) +o(- 5.-2)] 6.9

for all z € X. Replacing = by 2" !z and dividing by 4"~! in (3.4) we obtain
f1(2nx) fl(zn-—lx) “ 1 n—2 n—2 n—2 n—2
- < — - .
for all z € X and for all n € N.
An induction argument implies easily that

A2 o] < 43 gheloez ot 2] o
=0

for all z € X and for all n € N. Hence by (3.6) we obtain that

|2 AT f?n,f) fera)| (3.7)
< 2 = 1[ (212 2i—1z)+<p(—2i—1x,—2i—1x)]

i=m
for all z € X and for all n,m € N with n > m. Since the right hand side of (3.7)
tends to zero as m — oo, {Mf—:ﬂ} is a Cauchy sequence for all z € X and thus
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converges by the completeness of Y. Therefore we can define a function @ : X - Y
by

_ o f1(207)
Q(a:)—nll)rgo PR ze X.

Note that Q(0) =0, Q(—z) = Q(z) forall z € X.

Replacing z,y in (3.2) by 2"z, 2"y and dividing both sides by 4", and after then

taking the limit in the resulting inequality, we have

Qz +3y) +3Q(z —y) — Qz - 3y) - 3Q(z +y) = 0. (3.8)

Since Q is even and Q(2"z) = 4"Q(z) for all n € N, the function Q is quadratic as
in the proof of Theorem 2.1.
Taking the limit in (3.6) as n — oo, we obtain
1f1(2) - QI < 55 [®1(z, ) + 1(~2, ~a)] (3.9)
forall z € X.
To prove the uniqueness, let Q' be another quadratic function satisfying (3.9).
Then Q'(0) = 0, Q'(2"z) = 4"Q'(x), and Q'(—z) = Q'(x) for all z € X. Thus we

have

(@) < ||Q(2: hz)

1

Q) - +|2E2 - 2

< ={leE) - f1(2"w)ll FlA() - @22}
< _1__ ®1(2"z,2"z) + ®1(—2"z, —2"x)
— 16 4 )
Taking the limit as n — oo, we conclude that Q(z) = Q'(z) for all z € X.
Case 2. Assume that ¢ satisfies the condition (B) (and hence (D)).
Replacing z by £ in (3.3) we get

[r@-a@DI< GG +e(-5-0)] 6o
forallz € X.
Replacing z by 5=y and multiplying by 41 in (3.10) we obtain that
|

1 T gntl x z T z
o f1(2n 1) N 4nf1(2_n) =3 [""(2n+1’ 2n+1) “O(_ 2n+1’_2n+1)]
(3.11)
for all z € X and for all n € N. An induction argument implies that

©h(z) - h@| < 5 Zwl[ (7 37) +o( - g —gr) | 312)

,,h
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for all z € X and for all n € N.

Hence
k13

en() a2 3 4 bl ol )

(3.13)

for all z € X and for all n,m € N with n > m.
This shows that {4"f1(5%)} is a Cauchy sequence for all z € X and thus con-
verges. Therefore we can define a function @ : X = Y by

Q@) = lim 4" f1(53)-
Note that Q(0) =0, Q(—z) = Q(z) for all z € X. By (3.2) we have
Q(z +3y) +3Q(z — ) - Qe — 3y) — 3Q(z +) =0 (3.14)

for all z,y € X and thus @ is quadratic.
Taking the limit in (3.12) as n — oo, we obtain

11(2) - Q&) < 55 [®2(e,2) + Ba(~2,~2)] (3.15)
for all z € X.
Using the similar argument to that of Case 1, we easily have the uniqueness of Q
satisfying (3.15).
Now let fo : X — Y be a function defined by fa(z) := (1/2)[f(z) — f(—z)] for all
z € X. Then f5(0) =0, fo(—z) = —f2(z), and the relation (3.1) can be written by

|Df2(z, )]l = |l fo(z + 3y) + fa(z - v) — falz — 3y) — 3fa(z + ¥)l|

< (—21-) [w(w,y) +o(-z, —y)] (3.16)
for all z,y € X. Putting y = z in (3.16) yields
s (G D) +o(-5-0] o

for all z € X.
Case 3. Assume that  satisfies the condition (C) (and hence (A)).
Dividing the inequality (3.17) by 2 we have

[252 - @] < (Ple(5:5) +#(~ 5:-3)] (3.8
for all z € X. Replacing z by 2" 'z in (3.18) and dividing by 2"~! we obtain

” f2(22:1') _ fz(;::llx) “ < 2n1+1

[cp(?"_zm, 2" 2z) + (-2 "2z, —2"_2:1:)] (3.19)
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for all z € X and for all n € N.
It follows by an induction argument that

|25 - o)
n—1

1 1 - - 1 - -
<z [——2,~_1<P(2z '2,2712) + oy p(—2 e, -2 1)] (3.20)
=0

for all z € X and for all n € N. Hence

Hfz(Z"a:) _ fo(272) ‘
on 2m

n—1

1 1 o
< ['QiTﬂP(zz 'z,2 1x)+'217¢(-2’ 'z, 2" 1—:c)] (3.21)

00| +—
3

for all z € X and for all n,m € N with n > m.
This shows that {M;T—mz} is a Cauchy sequence for all z € X and thus converges
in Y. Therefore we can define a function A: X —» Y by

n
A(z) = lim M, z € X.
n—oo 2"

Note that A(0) =0, A(—z) = —A(z) for all z € X.
By (3.16) we get

A(z +3y) +34(z —y) — Az - 3y) —3A(z+y) =0

for all z,y € X and thus A is additive as in the proof of Theorem 2.1.
Taking the limit in (3.20) as n — oo, we obtain

1f2(2) - A@)] < 5 [B1(2,2) + 1, )] (3.22)

forall z € X.

If A’ is another additive function satisfying the inequality (3.22), then A’(0) = 0,
A'(—z) = A'(z) and A'(2"z) = 2"A'(z) for all £ € X. Thus one obtains that by
(3.22)

IA@) - @) < o (14(2") - L@ D)) + | 2(2°) - 4'(2"2)])
< 2"z, -2"z) + Uy (-2"z, 2 )
— on+2

1
on
U,

Taking the limit as n — 0o, we can conclude that we obtain A(z) = A'(z) for all
zeX.
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Case 4. Assume that ¢ satisfies the condition (D).
x 1 Tz T z
_ “M<{z et _Z =z
“fz("”) 2f2(2)” = (2)[‘p(4’4)+‘p( g 4)] (3.23)
forall z € X.
Replacing = by 575 in (3.23) and multiplying by 2"~ we obtain

7o) - 2°81(55)
<2 o(gom o) + o - o) | 620

for all z € X and for all n € N. An induction argument implies that

N3] FE e SN ROV I3
holds for all z € X and for all n € N.
Hence

2h(5) -2 (5)

1 & i1 T z T T
<3 > 2 ["0(2i+1’2i+1) +9"( - 2i+1’—2i+1)] (3.26)
i=m+1
for all z € X and for all n,m € N with n > m.

This implies that {2" fo(Z%)} is a Cauchy sequence for all z € X and thus con-
verges. Therefore we can define a function A: X - Y by

o one [T
Az) = nl;n;o2 f2(_27)’ z € X.
Note that A(0) =0, A(—z) = —A(z) for all z € X and thus A is additive.
Taking the limit in (3.25) as n — oo, we obtain
1
1£2(@) - A@)] < 5 [¥ale,2) + Yo, ~)] (3.27)

forallz € X.
Similarly we have easily that A is a unique additive mapping subject to (3.27).
We complete the proof. O

From the main theorem 3.1, we obtain the following corollary concerning the
stability of the equation (1.3).

Corollary 3.2. Letp # 1, p # 2 and € > 0 be real numbers. Assume that a function
f: X =Y satisfies the inequality

IDf(z,y)ll < e(lll® + HyllP) (3.28)
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for all z,y € X (z,y € X\{0} if p < 0). Then there exist a unique quadratic
function Q : X — Y and a unique additive function A : X — Y satisfying (1.3)
such that

Hf(w)~Q(w)—A(w)—f(0)llSE”x”p( ),

2> \|4—2¢] " [2— 27|
“ fz) + f(-2) H _2ejz|P_
2 = 2p[4 — 27|’

and
f(z) — f(-=) 2|||[?
H 2 B A(x)H = P2 - 2]
forallz € X (x € X\{0} if p<0).

Proof. Let o(z,y) := e(||z||? + ||y||P) for all z,y € X. Then ¢(z,z) = 2¢||z|[P for all
ze X (ze X\{0}ifp<0).
If p < 2, we have

i p(2" 1z, 2% ly) i 20 e(llzllP + llyllP) _ 16e(llzlP + liyliP)
4n=1 g1 2p(4 — 2¢)

n=0

for all z,y € X (z,y € X\{0} if p < Q). If p > 2, we have

) 00
4+ e(flel® + llyllP) _ 16e(ll=lP + llyl®)
n+1 —n—1 —n—1 _
D@ e 2y = ) op(n+1) 20(29 — 4)

n=1 n=1

forall z,y € X. If p < 1, we have

i o1z, 2% ly) i 2P|l P + lylP) _ deCllzl? + llyl?)
-1 gn-1 2°(2 — 2°)

n=0

for all z,y € X (z,y € X\{0} if p < 0). If p > 1, we have

N . om+1 el + lylP) _ 4elal + lyIP)
ntl,(o—n—1ly, 9-n-1,y — -
Z 2" (2 z,2 y) = Z 2(n+1)p 2P (2P — 2)

n=1 n=1
for all z,y € X. Thus applying Theorem 3.1 for the three cases p < 1,1 <p < 2
and 2 < p, we obtain easily the results. a

Corollary 3.3. Assume that for some § > 0, a function f : X — Y satisfies the
inequality

1Df(z,u)ll <6 (3.29)
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for all z,y € X. Then there exist a unique quadratic function Q : X — Y and a
unique additive function A: X —'Y satisfying (1.3) such that

1£(z) - Q(a) - Az) - FO)I < 30,
[£241ED o) - s0)] < 26,

and
fz) - f(-=)
B2 dw) <6
foralzxe X.
Proof. Putting ¢(z,y) := 0, we get immediately the result. O
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