ON THE HYERS-ULAM-RASSIAS STABILITY OF A MODIFIED ADDITIVE AND QUADRATIC FUNCTIONAL EQUATION

KIL-WOUNG JUN, HARK-MANN KIM, AND DON O LEE

ABSTRACT. In this paper, we solve the general solution of a modified additive and quadratic functional equation f(x+3y)+3f(x-y)=f(x-3y)+3f(x+y) in the class of functions between real vector spaces and obtain the Hyers-Ulam-Rassias stability problem for the equation in the sense of Găvruţa.

1. Introduction

In 1940, Ulam [17] raised a question concerning the stability of group homomorphism:

Let G_1 be a group and let G_2 be a metric group with the metric $d(\cdot,\cdot)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a function $f: G_1 \to G_2$ satisfies the inequality $d(f(xy), f(x)f(y)) < \delta$ for all $x, y \in G_1$, then there exists a homomorphism $H: G_1 \to G_2$ with $d(f(x), H(x)) < \varepsilon$ for all $x \in G_1$?

In other words, we are looking for situations when the homomorphisms are stable, *i. e.*, if a mapping is almost a homomorphism, then there exists a true homomorphism rear it.

It is easy to see that the quadratic function $f(x) = cx^2$ on real field is a solution of the following equation:

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
(1.1)

So, it is national that the equation (1.1) is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is said to be a quadratic function. It is well known that a function f between real vector spaces is quadratic if

Received by the editors July 15, 2004.

²⁰⁰⁰ Mathematics Subject Classification. 39A11, 39B72.

Key words and phrases. Hyers-Ulam stability, quadratic function.

This work was supported by grant No. R01-2000-0005-0(2002) from the KOSEF.

and only if there exists a unique symmetric biadditive function B such that f(x) = B(x,x) for all x (see Aczél & Dhombres [1], Kannappan [14]). The biadditive function B is given by

$$B(x,y) = \frac{1}{4}(f(x+y) - f(x-y)). \tag{1.2}$$

The case of approximately additive functions was solved by Hyers [7] and generalized by Rassias [15]. During the last decades, the stability problems of several functional equations have been extensively investigated by a number of authors Baker [2], Hyers, Isac & Rassias [8, 9], Hyers & Rassias [10], Jun & Kim [12], Rassias [16]. A stability problem for the quadratic functional equation (1.1) was solved by a lot of authors Czerwik [4], Grabiec [6], Jung [13]. Further, Jun & Lee [11] proved the generalized Hyers-Ulam stability of the pexiderized quadratic equation (1.1).

Now, we investigate the following new additive and quadratic functional equation,

$$f(x+3y) + 3f(x-y) = f(x-3y) + 3f(x+y). \tag{1.3}$$

In this paper, we obtain the general solution of equation (1.3) in the class of functions between real or complex vector spaces and we establish the Hyers-Ulam-Rassias stability problem for the equation (1.3) in the sense of Găvruţa.

2. General Solution of (1.3)

We here present the general solution of the functional equation (1.3).

Theorem 2.1. Let X and Y be real vector spaces. A function $f: X \to Y$ satisfies the functional equation (1.3) if and only if there exist functions $Q: X \to Y$, $A: X \to Y$ and a constant c in Y such that f(x) = Q(x) + A(x) + c for all $x \in X$, where Q is quadratic, and A is additive.

Proof. We first assume that f is a solution of the functional equation (1.3).

Let $A(x) := \frac{1}{2}[f(x) - f(-x)]$ and $Q(x) := \frac{1}{2}[f(x) + f(-x)] - f(0)$. Then it follows that A(0) = 0, A(-x) = -A(x) and Q(0) = 0, Q(-x) = Q(x). Since f satisfies the functional equation (1.3), we get that

$$A(x+3y) + 3A(x-y) = A(x-3y) + 3A(x+y)$$
 (2.1)

$$Q(x+3y) + 3Q(x-y) = Q(x-3y) + 3Q(x+y)$$
(2.2)

for all $x, y \in X$.

Now we prove that A is additive.

Putting y = x and x = 0 in (2.1), separately, we have A(2x) = 2A(x) and A(3y) = 3A(y).

Interchanging x and y in (2.1) and rewriting the resulting equation, we get

$$A(3x + y) + A(3x - y) = A(3x + 3y) + A(3x - 3y)$$
(2.3)

for all $x, y \in X$.

From (2.3), we deduce

$$A(u) + A(v) = A(2u - v) + A(2v - u)$$
(2.4)

for all $u, v \in X$.

Replacing y by -2x + y in (2.3) and x by x - 2y in (2.1), we get

$$A(x+y) + A(5x-y) = 3A(-x+y) + 3A(3x-y)$$
 (2.5)

$$A(x+y) + 3A(x-3y) = A(x-5y) + 3A(x-y)$$
 (2.6)

for all $x, y \in X$. Using (2.5) and (2.6), one obtains

$$A(5x - y) + A(x - 5y) = -6A(x - y) + 3A(3x - y) + 3A(x - 3y)$$
 (2.7)

for all $x, y \in X$. Applying the relation (2.4) to the left hand side of (2.7), we have

$$A(3x + y) - A(x + 3y) = -2A(x - y) + A(3x - y) + A(x - 3y).$$
 (2.8)

Replacing y by -y in (2.8), we have

$$A(3x - y) - A(x - 3y) = -2A(x + y) + A(3x + y) + A(x + 3y).$$
 (2.9)

From (2.8) and (2.9), we arrive at

$$A(3x + y) - A(3x - y) = A(x + y) - A(x - y).$$
(2.10)

Adding (2.10) to (2.3), we get

$$A(3x + y) + A(-x + y) = A(2x + 2y). (2.11)$$

Letting $\alpha = 3x + y$ and $\beta = -x + y$ in (2.11), then we see

$$A(\alpha) + A(\beta) = A(\alpha + \beta).$$

Therefore A is an additive.

Next, we show that Q is quadratic. By putting y = x and $y = \frac{x}{3}$ in (2.2), respectively, we see that Q(2x) = 4Q(x) and Q(3x) = 9Q(x).

Interchanging x and y in (2.2), we get

$$Q(3x+y) + 3Q(x-y) = Q(3x-y) + 3Q(x+y)$$
 (2.12)

for all $x, y \in X$.

Replacing x by 2x + y in (2.2) and y by x + 2y in (2.12), respectively, we get

$$Q(x+2y) + 3Q(x) = Q(x-y) + 3Q(x+y)$$
(2.13)

$$Q(2x+y) + 3Q(y) = Q(x-y) + 3Q(x+y)$$
(2.14)

for all $x, y \in X$.

Therefore, we have the following crucial equation from (2.13) and (2.14)

$$Q(2x+y) - Q(x+2y) = 3Q(x) - 3Q(y)$$
(2.15)

for all $x, y \in X$.

Now utilizing (2.15) one obtains the following two relations

$$Q(x+y) - Q(x - \frac{y}{2}) = \frac{1}{3}Q\left(3(x + \frac{y}{2})\right) - \frac{1}{3}Q(3x),$$

$$Q(x-y) - Q(x + \frac{y}{2}) = \frac{1}{3}Q\left(3(x - \frac{y}{2})\right) - \frac{1}{3}Q(3x).$$

Since Q(2x) = 4Q(x), Q(3x) = 9Q(x) for all $x \in X$, adding the above two relations we get

$$Q(x+y) + Q(x-y) + 6Q(x) = Q(2x+y) + Q(2x-y), (2.16)$$

which is equivalent to the original quadratic functional equation Q(x+y)+Q(x-y)=2Qx)+2Q(y) Chang & Kim [3]. Therefore, Q is quadratic.

That is, if $f: X \to Y$ satisfies the functional equation (1.3), then f(x) = Q(x) + A(x) + f(0) for all $x \in X$, where Q is quadratic and A is additive.

Conversely, if there exist functions $Q: X \to Y$, $A: X \to Y$ and a constant c in Y such that f(x) = Q(x) + A(x) + c for all $x \in X$, where Q is quadratic and A is additive, then it is obvious that f satisfies the equation (1.3).

3. Stability of
$$(1.3)$$

Throughout this section X and Y will be a real normed linear space and a real Banach space, respectively. Given $f: X \to Y$, we set

$$Df(x,y) := f(x+3y) + 3f(x-y) - f(x-3y) - 3f(x+y)$$

for all $x, y \in X$.

Let $\varphi: X \times X \to [0, \infty)$ be a mapping satisfying one of the conditions (\mathcal{A}) , (\mathcal{B}) and one of the conditions (\mathcal{C}) , (\mathcal{D}) :

$$(\mathcal{A}) \qquad \qquad \Phi_{1}(x,y) := \sum_{k=0}^{\infty} \frac{1}{4^{k-1}} \varphi(2^{k-1}x, 2^{k-1}y) < \infty$$

(B)
$$\Phi_2(x,y) := \sum_{k=1}^{\infty} 4^{k+1} \varphi(\frac{x}{2^{k+1}}, \frac{y}{2^{k+1}}) < \infty$$

$$(\mathcal{C}) \qquad \Psi_1(x,y) := \sum_{k=0}^{\infty} \frac{1}{2^{k-1}} \varphi(2^{k-1}x, 2^{k-1}y) < \infty$$

$$(\mathcal{D}) \qquad \Psi_2(x,y) := \sum_{k=1}^{\infty} 2^{k+1} \varphi(\frac{x}{2^{k+1}}, \frac{y}{2^{k+1}}) < \infty$$

for all $x, y \in X$.

One of the conditions (A), (B) will be needed to derive a quadratic function and one of the conditions (C), (D) will be needed to derive an additive function in the following theorem.

Theorem 3.1. If a function $f: X \to Y$ satisfies

$$||Df(x,y))|| \le \varphi(x,y) \tag{3.1}$$

for all $x, y \in X$. Then there exist a unique quadratic function $Q: X \to Y$ and a unique additive function $A: X \to Y$ satisfying the equation (1.3) such that

$$||f(x) - Q(x) - A(x) - f(0)|| \le \frac{1}{32} \Big[\Phi_i(x, x) + \Phi_i(-x, -x) \Big]$$

$$+ \frac{1}{8} \Big[\Psi_j(x, x) + \Psi_j(-x, -x) \Big],$$

$$\left\| \frac{f(x) + f(-x)}{2} - Q(x) - f(0) \right\| \le \frac{1}{32} \Big[\Phi_i(x, x) + \Phi_i(-x, -x) \Big],$$

and

$$\left\|\frac{f(x)-f(-x)}{2}-A(x)\right\|\leq \frac{1}{8}\Big[\Psi_j(x,x)+\Psi_j(-x,-x)\Big]$$

for all $x \in X$ and for i = 1 or 2, j = 1 or 2.

The functions Q and A are given by

$$\begin{cases} Q(x) = \lim_{n \to \infty} \frac{f(2^n x) + f(-2^n x)}{2 \cdot 4^n} & \text{if } \mathcal{A} \text{ holds,} \\ Q(x) = \lim_{n \to \infty} 4^n \frac{f(\frac{x}{2^n}) + f(-\frac{x}{2^n}) - 2f(0)}{2} & \text{if } \mathcal{B} \text{ holds,} \\ A(x) = \lim_{n \to \infty} \frac{f(2^n x) - f(-2^n x)}{2^{n+1}} & \text{if } \mathcal{C} \text{ holds,} \\ A(x) = \lim_{n \to \infty} 2^n \frac{f(\frac{x}{2^n}) - f(-\frac{x}{2^n})}{2} & \text{if } \mathcal{D} \text{ holds.} \end{cases}$$

for all $x \in X$.

Proof. Let $f_1: X \to Y$ be a function defined by $f_1(x) := (1/2)[f(x) + f(-x)] - f(0)$ for all $x \in X$. Then $f_1(0) = 0$, $f_1(x) = f_1(-x)$, and

$$||Df_1(x,y)|| = ||f_1(x+3y) + 3f_1(x-y) - f_1(x-3y) - 3f_1(x+y)||$$

$$\leq (1/2)[\varphi(x,y) + \varphi(-x,-y)]$$
(3.2)

for all $x, y \in X$. Putting y = x in (3.2) yields

$$||f_1(4x) - 4f_1(2x)|| \le (1/2)[\varphi(x,x) + \varphi(-x,-x)]$$
(3.3)

for all $x \in X$.

Case 1. Assume that φ satisfies the condition (A). Dividing both sides of (3.3) by 4 and letting $\frac{x}{2}$ for x, we have

$$\left\| \frac{f_1(2x)}{4} - f_1(x) \right\| \le \frac{1}{8} \left[\varphi\left(\frac{x}{2}, \frac{x}{2}\right) + \varphi\left(-\frac{x}{2}, -\frac{x}{2}\right) \right] \tag{3.4}$$

for all $x \in X$. Replacing x by $2^{n-1}x$ and dividing by 4^{n-1} in (3.4) we obtain

$$\left\| \frac{f_1(2^n x)}{4^n} - \frac{f_1(2^{n-1} x)}{4^{n-1}} \right\| \le \frac{1}{2 \cdot 4^n} \left[\varphi(2^{n-2} x, 2^{n-2} x) + \varphi(-2^{n-2} x, -2^{n-2} x) \right]$$
(3.5)

for all $x \in X$ and for all $n \in \mathbb{N}$.

An induction argument implies easily that

$$\left\| \frac{f_1(2^n x)}{4^n} - f_1(x) \right\| \le \frac{1}{32} \sum_{i=0}^{n-1} \frac{1}{4^{i-1}} \left[\varphi(2^{i-1} x, 2^{i-1} x) + \varphi(-2^{i-1} x, -2^{i-1} x) \right]$$
(3.6)

for all $x \in X$ and for all $n \in \mathbb{N}$. Hence by (3.6) we obtain that

$$\left\| \frac{f_{1}(2^{n}x)}{4^{n}} - \frac{f_{1}(2^{m}x)}{4^{m}} \right\| \leq \frac{1}{4^{m}} \left\| \frac{f_{1}(2^{n}x)}{4^{n-m}} - f_{1}(2^{m}x) \right\|$$

$$\leq \frac{1}{32} \sum_{i=m}^{n-1} \frac{1}{4^{i-1}} \left[\varphi(2^{i-1}x, 2^{i-1}x) + \varphi(-2^{i-1}x, -2^{i-1}x) \right]$$
(3.7)

for all $x \in X$ and for all $n, m \in \mathbb{N}$ with n > m. Since the right hand side of (3.7) tends to zero as $m \to \infty$, $\left\{\frac{f_1(2^n x)}{4^n}\right\}$ is a Cauchy sequence for all $x \in X$ and thus

converges by the completeness of Y. Therefore we can define a function $Q: X \to Y$ by

$$Q(x) = \lim_{n \to \infty} \frac{f_1(2^n x)}{4^n}, \quad x \in X.$$

Note that Q(0) = 0, Q(-x) = Q(x) for all $x \in X$.

Replacing x, y in (3.2) by $2^n x, 2^n y$ and dividing both sides by 4^n , and after then taking the limit in the resulting inequality, we have

$$Q(x+3y) + 3Q(x-y) - Q(x-3y) - 3Q(x+y) = 0. (3.8)$$

Since Q is even and $Q(2^n x) = 4^n Q(x)$ for all $n \in \mathbb{N}$, the function Q is quadratic as in the proof of Theorem 2.1.

Taking the limit in (3.6) as $n \to \infty$, we obtain

$$||f_1(x) - Q(x)|| \le \frac{1}{32} \Big[\Phi_1(x, x) + \Phi_1(-x, -x) \Big]$$
 (3.9)

for all $x \in X$.

To prove the uniqueness, let Q' be another quadratic function satisfying (3.9). Then Q'(0) = 0, $Q'(2^n x) = 4^n Q'(x)$, and Q'(-x) = Q'(x) for all $x \in X$. Thus we have

$$||Q(x) - Q'(x)|| \le \left\| \frac{Q(2^n x)}{4^n} - \frac{f_1(2^n x)}{4^n} \right\| + \left\| \frac{f_1(2^n x)}{4^n} - \frac{Q'(2^n x)}{4^n} \right\|$$

$$\le \frac{1}{4^n} \left\{ ||Q(2^n x) - f_1(2^n x)|| + ||f_1(2^n x) - Q'(2^n x)|| \right\}$$

$$\le \frac{1}{16} \frac{\Phi_1(2^n x, 2^n x) + \Phi_1(-2^n x, -2^n x)}{4^n}.$$

Taking the limit as $n \to \infty$, we conclude that Q(x) = Q'(x) for all $x \in X$.

Case 2. Assume that φ satisfies the condition (\mathcal{B}) (and hence (\mathcal{D})).

Replacing x by $\frac{x}{4}$ in (3.3) we get

$$\left\| f_1(x) - 4f_1\left(\frac{x}{2}\right) \right\| \le \left(\frac{1}{2}\right) \left[\varphi\left(\frac{x}{4}, \frac{x}{4}\right) + \varphi\left(-\frac{x}{4}, -\frac{x}{4}\right) \right] \tag{3.10}$$

for all $x \in X$.

Replacing x by $\frac{x}{2^{n-1}}$ and multiplying by 4^{n-1} in (3.10) we obtain that

$$\left\|4^{n-1}f_1\left(\frac{x}{2^{n-1}}\right) - 4^n f_1\left(\frac{x}{2^n}\right)\right\| \le \frac{4^{n+1}}{32} \left[\varphi\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}}\right) + \varphi\left(-\frac{x}{2^{n+1}}, -\frac{x}{2^{n+1}}\right)\right] \tag{3.11}$$

for all $x \in X$ and for all $n \in \mathbb{N}$. An induction argument implies that

$$\left\|4^{n} f_{1}\left(\frac{x}{2^{n}}\right) - f_{1}(x)\right\| \leq \frac{1}{32} \sum_{i=1}^{n} 4^{i+1} \left[\varphi\left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+1}}\right) + \varphi\left(-\frac{x}{2^{i+1}}, -\frac{x}{2^{i+1}}\right)\right]$$
(3.12)

for all $x \in X$ and for all $n \in \mathbb{N}$.

Hence

$$\left\|4^{n} f_{1}\left(\frac{x}{2^{n}}\right) - 4^{m} f_{1}\left(\frac{x}{2^{m}}\right)\right\| \leq \frac{1}{32} \sum_{i=m+1}^{n} 4^{i+1} \left[\varphi\left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+1}}\right) + \varphi\left(-\frac{x}{2^{i+1}}, -\frac{x}{2^{i+1}}\right)\right]$$
(3.13)

for all $x \in X$ and for all $n, m \in \mathbb{N}$ with n > m.

This shows that $\{4^n f_1(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$ and thus converges. Therefore we can define a function $Q: X \to Y$ by

$$Q(x) = \lim_{n \to \infty} 4^n f_1(\frac{x}{2^n}).$$

Note that Q(0) = 0, Q(-x) = Q(x) for all $x \in X$. By (3.2) we have

$$Q(x+3y) + 3Q(x-y) - Q(x-3y) - 3Q(x+y) = 0 (3.14)$$

for all $x, y \in X$ and thus Q is quadratic.

Taking the limit in (3.12) as $n \to \infty$, we obtain

$$||f_1(x) - Q(x)|| \le \frac{1}{32} \Big[\Phi_2(x, x) + \Phi_2(-x, -x) \Big]$$
 (3.15)

for all $x \in X$.

Using the similar argument to that of Case 1, we easily have the uniqueness of Q satisfying (3.15).

Now let $f_2: X \to Y$ be a function defined by $f_2(x) := (1/2)[f(x) - f(-x)]$ for all $x \in X$. Then $f_2(0) = 0$, $f_2(-x) = -f_2(x)$, and the relation (3.1) can be written by

$$||Df_2(x,y)|| = ||f_2(x+3y) + f_2(x-y) - f_2(x-3y) - 3f_2(x+y)||$$

$$\leq \left(\frac{1}{2}\right) \left[\varphi(x,y) + \varphi(-x,-y)\right]$$
(3.16)

for all $x, y \in X$. Putting y = x in (3.16) yields

$$||f_2(2x) - 2f_2(x)|| \le \left(\frac{1}{2}\right) \left[\varphi\left(\frac{x}{2}, \frac{x}{2}\right) + \varphi\left(-\frac{x}{2}, -\frac{x}{2}\right)\right]$$
 (3.17)

for all $x \in X$.

Case 3. Assume that φ satisfies the condition (\mathcal{C}) (and hence (\mathcal{A})).

Dividing the inequality (3.17) by 2 we have

$$\left\| \frac{f_2(2x)}{2} - f_2(x) \right\| \le \left(\frac{1}{4} \right) \left[\varphi\left(\frac{x}{2}, \frac{x}{2} \right) + \varphi\left(-\frac{x}{2}, -\frac{x}{2} \right) \right] \tag{3.18}$$

for all $x \in X$. Replacing x by $2^{n-1}x$ in (3.18) and dividing by 2^{n-1} we obtain

$$\left\| \frac{f_2(2^n x)}{2^n} - \frac{f_2(2^{n-1} x)}{2^{n-1}} \right\| \le \frac{1}{2^{n+1}} \left[\varphi(2^{n-2} x, 2^{n-2} x) + \varphi(-2^{n-2} x, -2^{n-2} x) \right]$$
(3.19)

for all $x \in X$ and for all $n \in \mathbb{N}$.

It follows by an induction argument that

$$\left\| \frac{f_2(2^n x)}{2^n} - f_2(x) \right\| \le \frac{1}{8} \sum_{i=0}^{n-1} \left[\frac{1}{2^{i-1}} \varphi(2^{i-1} x, 2^{i-1} x) + \frac{1}{2^{i-1}} \varphi(-2^{i-1} x, -2^{i-1}) \right]$$
(3.20)

for all $x \in X$ and for all $n \in \mathbb{N}$. Hence

$$\left\| \frac{f_2(2^n x)}{2^n} - \frac{f_2(2^m x)}{2^m} \right\| \\ \leq \frac{1}{8} \sum_{i=-n}^{n-1} \left[\frac{1}{2^{i-1}} \varphi(2^{i-1} x, 2^{i-1} x) + \frac{1}{2^{i-1}} \varphi(-2^{i-1} x, 2^{i-1} - x) \right]$$
(3.21)

for all $x \in X$ and for all $n, m \in \mathbb{N}$ with n > m.

This shows that $\{\frac{f_2(2^n x)}{2^n}\}$ is a Cauchy sequence for all $x \in X$ and thus converges in Y. Therefore we can define a function $A: X \to Y$ by

$$A(x) = \lim_{n \to \infty} \frac{f_2(2^n x)}{2^n}, \quad x \in X.$$

Note that A(0) = 0, A(-x) = -A(x) for all $x \in X$.

By (3.16) we get

$$A(x+3y) + 3A(x-y) - A(x-3y) - 3A(x+y) = 0$$

for all $x, y \in X$ and thus A is additive as in the proof of Theorem 2.1.

Taking the limit in (3.20) as $n \to \infty$, we obtain

$$||f_2(x) - A(x)|| \le \frac{1}{8} \Big[\Psi_1(x, x) + \Psi_1(-x, -x) \Big]$$
 (3.22)

for all $x \in X$.

If A' is another additive function satisfying the inequality (3.22), then A'(0) = 0, A'(-x) = A'(x) and $A'(2^n x) = 2^n A'(x)$ for all $x \in X$. Thus one obtains that by (3.22)

$$||A(x) - A'(x)|| \le \frac{1}{2^n} \Big(||A(2^n x) - f_2(2^n x)|| + ||f_2(2^n x) - A'(2^n x)|| \Big)$$

$$\le \frac{\Psi_1(2^n x, -2^n x) + \Psi_1(-2^n x, 2^n x)}{2^{n+2}}.$$

Taking the limit as $n \to \infty$, we can conclude that we obtain A(x) = A'(x) for all $x \in X$.

Case 4. Assume that φ satisfies the condition (\mathcal{D}) .

$$\left\| f_2(x) - 2f_2\left(\frac{x}{2}\right) \right\| \le \left(\frac{1}{2}\right) \left[\varphi(\frac{x}{4}, \frac{x}{4}) + \varphi\left(-\frac{x}{4}, -\frac{x}{4}\right) \right] \tag{3.23}$$

for all $x \in X$.

Replacing x by $\frac{x}{2^{n-1}}$ in (3.23) and multiplying by 2^{n-1} we obtain

$$\left\| 2^{n-1} f_2\left(\frac{x}{2^{n-1}}\right) - 2^n f_2\left(\frac{x}{2^n}\right) \right\| \le 2^{n-2} \left[\varphi\left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}}\right) + \varphi\left(-\frac{x}{2^{n+1}}, -\frac{x}{2^{n+1}}\right) \right]$$
(3.24)

for all $x \in X$ and for all $n \in \mathbb{N}$. An induction argument implies that

$$\left\| f_2(x) - 2^n f_2\left(\frac{x}{2^n}\right) \right\| \le \frac{1}{8} \sum_{i=1}^n 2^{i+1} \left[\varphi\left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+1}}\right) + \varphi\left(-\frac{x}{2^i}, -\frac{x}{2^{i+1}}\right) \right]$$
(3.25)

holds for all $x \in X$ and for all $n \in \mathbb{N}$.

Hence

$$\left\| 2^{n} f_{2}\left(\frac{x}{2^{n}}\right) - 2^{m} f_{2}\left(\frac{x}{2^{m}}\right) \right\|$$

$$\leq \frac{1}{8} \sum_{i=m+1}^{n} 2^{i+1} \left[\varphi\left(\frac{x}{2^{i+1}}, \frac{x}{2^{i+1}}\right) + \varphi\left(-\frac{x}{2^{i+1}}, -\frac{x}{2^{i+1}}\right) \right]$$
 (3.26)

for all $x \in X$ and for all $n, m \in \mathbb{N}$ with n > m.

This implies that $\{2^n f_2(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$ and thus converges. Therefore we can define a function $A: X \to Y$ by

$$A(x) = \lim_{n \to \infty} 2^n f_2\left(\frac{x}{2^n}\right), \quad x \in X.$$

Note that A(0) = 0, A(-x) = -A(x) for all $x \in X$ and thus A is additive.

Taking the limit in (3.25) as $n \to \infty$, we obtain

$$||f_2(x) - A(x)|| \le \frac{1}{8} \Big[\Psi_2(x, x) + \Psi_2(-x, -x) \Big]$$
 (3.27)

for all $x \in X$.

Similarly we have easily that A is a unique additive mapping subject to (3.27). We complete the proof.

From the main theorem 3.1, we obtain the following corollary concerning the stability of the equation (1.3).

Corollary 3.2. Let $p \neq 1$, $p \neq 2$ and $\varepsilon \geq 0$ be real numbers. Assume that a function $f: X \to Y$ satisfies the inequality

$$||Df(x,y)|| \le \varepsilon(||x||^p + ||y||^p)$$
 (3.28)

for all $x, y \in X$ $(x, y \in X \setminus \{0\})$ if p < 0. Then there exist a unique quadratic function $Q: X \to Y$ and a unique additive function $A: X \to Y$ satisfying (1.3) such that

$$||f(x) - Q(x) - A(x) - f(0)|| \le \frac{\varepsilon ||x||^p}{2^p} \left(\frac{1}{|4 - 2^p|} + \frac{1}{|2 - 2^p|} \right),$$

$$||\frac{f(x) + f(-x)}{2} - Q(x) - f(0)|| \le \frac{2\varepsilon ||x||^p}{2^p |4 - 2^p|},$$

and

$$\left\| \frac{f(x) - f(-x)}{2} - A(x) \right\| \le \frac{2\varepsilon \|x\|^p}{2^p |2 - 2^p|}$$

for all $x \in X$ $(x \in X \setminus \{0\})$ if p < 0.

Proof. Let $\varphi(x,y) := \varepsilon(||x||^p + ||y||^p)$ for all $x,y \in X$. Then $\varphi(x,x) = 2\varepsilon||x||^p$ for all $x \in X$ $(x \in X \setminus \{0\})$ if p < 0.

If p < 2, we have

$$\sum_{n=0}^{\infty} \frac{\varphi(2^{n-1}x, 2^{n-1}y)}{4^{n-1}} = \sum_{n=0}^{\infty} \frac{2^{p(n-1)} \varepsilon(\|x\|^p + \|y\|^p)}{4^{n-1}} = \frac{16\varepsilon(\|x\|^p + \|y\|^p)}{2^p(4-2^p)}$$

for all $x, y \in X$ $(x, y \in X \setminus \{0\})$ if p < 0. If p > 2, we have

$$\sum_{n=1}^{\infty} 4^{n+1} \varphi(2^{-n-1}x, 2^{-n-1}y) = \sum_{n=1}^{\infty} \frac{4^{n+1} \varepsilon(\|x\|^p + \|y\|^p)}{2^{p(n+1)}} = \frac{16\varepsilon(\|x\|^p + \|y\|^p)}{2^p(2^p - 4)}$$

for all $x, y \in X$. If p < 1, we have

$$\sum_{n=0}^{\infty} \frac{\varphi(2^{n-1}x,2^{n-1}y)}{2^{n-1}} = \sum_{n=0}^{\infty} \frac{2^{(n-1)p}\varepsilon(\|x\|^p + \|y\|^p)}{2^{n-1}} = \frac{4\varepsilon(\|x\|^p + \|y\|^p)}{2^p(2-2^p)}$$

for all $x, y \in X$ $(x, y \in X \setminus \{0\})$ if p < 0. If p > 1, we have

$$\sum_{n=1}^{\infty} 2^{n+1} \varphi(2^{-n-1}x, 2^{-n-1}y) = \sum_{n=1}^{\infty} \frac{2^{n+1} \varepsilon(\|x\|^p + \|y\|^p)}{2^{(n+1)p}} = \frac{4\varepsilon(\|x\|^p + \|y\|^p)}{2^p (2^p - 2)}$$

for all $x, y \in X$. Thus applying Theorem 3.1 for the three cases p < 1, 1 < p < 2 and 2 < p, we obtain easily the results.

Corollary 3.3. Assume that for some $\theta > 0$, a function $f: X \to Y$ satisfies the inequality

$$||Df(x,y))|| \le \theta \tag{3.29}$$

for all $x, y \in X$. Then there exist a unique quadratic function $Q: X \to Y$ and a unique additive function $A: X \to Y$ satisfying (1.3) such that

$$||f(x) - Q(x) - A(x) - f(0)|| \le \frac{4}{3}\theta,$$

 $\left\|\frac{f(x) + f(-x)}{2} - Q(x) - f(0)\right\| \le \frac{1}{3}\theta,$

and

$$\left\|\frac{f(x) - f(-x)}{2} - A(x)\right\| \le \theta$$

for all $x \in X$.

Proof. Putting $\varphi(x,y) := \theta$, we get immediately the result.

REFERENCES

- J. Aczél & J. Dhombres: Functional equations in several variables, With applications to mathematics, information theory and to the natural and social sciences. Cambridge University Press, Cambridge, 1989. MR 90h:39001
- J. Baker: The stability of the cosine equation. Proc. Amer. Math. Soc. 80 (1980), no. 3, 411-416. MR 81m:39015
- 3. I. S. Charg & W. M. Kim: On the Hyers-Ulam stability of quadratic functional equations. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 33, 12 pp. (electronic). MR 2003f:39092
- 4. S. Czerwik: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. MR 94e:39026
- P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. MR 95e:47089
- A. Grabiec: The generalized Hyers-Ulam stability of a class of functional equations. Publ. Math. Debrecen 48 (1996), no. 3-4, 217-235. MR 98a:39027
- 7. D. H. Hyers: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U. S. A. 27 (1941). 222-224. MR 2,315a
- 8. D. H. Hyers, G. Isac & Th. M. Rassias: Stability of functional equations in several variables. Birkhauser Boston, Inc., Boston, MA, 1998.
- 9. _____: On the asymptoticity aspect of Hyers-Ulam stability of mappings. *Proc. Amer. Math. Soc.* 126 (1998), no. 2, 425-430. MR 98d:39004
- D. H. Hyers & Th. M. Rassias: Approximate homomorphisms. Aequationes Math. 44 (1992), no. 2-3, 125-153. MR 93i:39007
- K. W. Jun & Y. H. Lee: On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality. Math. Inequal. Appl. 4 (2001), no. 1, 93-118. MR 2001j:39040

- 12. K. W. Jun & H. M. Kim: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. To appear.
- 13. S.-M. Jung: On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal. Appl. 222 (1998), no. 1, 126-137. MR 99e:39095
- 14. Pl. Kannappan: Quadratic functional equation and inner product spaces. Results Math. 27 (1995), no. 3-4, 368-372. MR 96h:39011
- 15. Th. M. Rassias: On the stability of the linear mapping in Banach spaces. *Proc. Amer. Math. Soc.* 72 (1978), no. 2, 297-300. MR 80d:47094
- 16. _____: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 251 (2000), no. 1, 264-284. MR 2003b:39036
- S. M. Ulam: Problems in modern mathematics. Science Editions John Wiley & Sons, Inc., New York 1964. MR 43#6031
- (K.-W. Jun) DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, 220 GUNG-DONG, YUSEONG-GU, DAEJEON 305-335, KOREA *Email address*: kwjun@math.cnu.ac.kr
- (H. -M. Kim) DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, 220 GUNG-DONG, YUSEONG-GU, DAEJEON 305-335, KOREA Email address: hmkim@math.cnu.ac.kr
- (D. O LEE) INFORMATION CENTER FOR MATHEMATICAL SCIENCES, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, 373-1 GUSEONG-DONG, YUSEONG-GU, DAEJEON 305-701, KOREA Email address: donolee@icms.kaist.ac.kr