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POINTS AT INFINITY OF
COMPLETE OPEN RIEMANNIAN MANIFOLDS

TAE-SOON KiM AND MYUNG-JIN JEON

ABSTRACT. For a complete open Riemannian manifold, the ideal boundary consists
of points at infinity. The so-called Busemann-functions play the role of distance
functions for points at infinity. We study the similarity and difference between
Busemann-functions and ordinary distance functions.

1. INTRODUCTION

In Riemannian geometry, noncompact manifolds have been less popular than
compact ones. It is certainly because compact manifolds have bounded geometry
and topology, and hence they are easier to handle. When we study a complete open
Riemannian manifold M, we sometimes need to consider a compactification of M.
If a complete open manifold M is compactified in certain ways, its boundary M is
called the ideal boundary. There are several ways to define the ideal boundary of an
open manifold, but maybe the most natural definition is by equivalence classes of
rays. In the Euclidean case, two straight lines are equivalent if they are parallel to
each other. A natural generalization of parallel lines in an open Riemannian manifold
should be asymptotic rays, but the asymptotic relation is not an equivalence relation
in general. In some earlier works on this subject, in order to avoid this problem, a
point at infinity is defined by an equivalence relation artificially constructed from
the asymptotic relation. We will discuss these problems in detail.

The concept of ideal boundary has been widely used in the study of non-positively
curved manifolds. In this case, the universal covering spaces are Hadamard mani-
folds, on which asymptotic rays behave almost like parallel lines in the Euclidean
space, and the ideal boundary is defined in a natural way. In fact, an inner metric
called Tits’ metric can be defined on the ideal boundary, and the geometry of ideal
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boundary is closely related to the global structure of manifolds Ballmann, Gromov
& Schroeder [1], Gromov [7]. When the ideal boundary of an open manifold is prop-
erly defined, the so-called Busemann-function corresponding to a ray plays the role
of a distance function from a point at infinity. In many aspects, the property of
Busemann-function resembles that of an ordinary distance function, but there are
also differences. The concept of Busemann-function is also proven useful in the study
of mainfolds without conjugate points. Busemann-functions are only continuous in
general, but for manifolds without conjugate points they have some differentiability
Eberlein [4], Yim [14]. An interesting and also useful tool for this case is the sta-
ble Jacobi tensor, which is a Jacobi tensor along a ray satisfying certain boundary
conditions. We will show how this concept is related to points at infinity.

Aside from non-positively curved manifolds, the asymptotic geometry of open
manifolds has not been very successful in attracting a lot of attention. It is partly
because the asymptotic structure of an open manifold is in general very complicated
and there are not many analytic tools one can use. The study of asymptotic rays on
open manifolds and related topics was pioneered by Busemann. Some early results
on this subject can be found in Busemann [2], Nasu [11, 12}, and tools developed
in these works are used in Lewis [10] to study the cut locus of a point at infinity
for surfaces. In Busemann [3], Innami [9], these concepts are further developed
and studied, and in particular the structure of cut locus and the differentiability of
Busemann-functions are considered. There are other related topics studied by many
authors, and in this paper we will summarize some of these facts in a coherent way
and introduce some new concepts with new results. In particular, we define well-
known concepts such as cut locus, conjugate locus, and convexity for the points at
infinity. They are defined in a similar way as in the case of ordinary interior points
and have some similar properties, but there are also differences and we will discuss
these problems.

We refer to Busemann [2, 3] for details about asymptotic rays, and to Innami [9],
Shiohama [13] for technical facts on Busemann-functions.

2. IDEAL BOUNDARY

In this section, we recall some known facts about the ideal boundary of open
manifolds, and study the property of space at infinity.
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The ideal boundary or the space at infinity is by definition the set of points at
infinity. There are several ways to define this space at infinity, but we first follow the
lead of Ballmann, Gromov & Schroeder [1], Gromov [8]. For a Riemannian manifold
M let d(-,-) denote the distance function induced by the Riemannian metric, and
for each p € M let dp be the continuous function ¢ — d(p,q). The map p — d,
defines an embedding of M into C(M), the set of continuous functions on M with
the topology of uniform convergence on compact sets.

We consider Cy(M) := C(M)/(constant functions) with the induced topology
and the induced embedding i : M — C.(M) defined by i(p) = [dp), the equivalence
class of dp. The boundary OM is defined as CI(M) \ i(M), where CI(M) is the
closure of ¢(M) in C.(M). A point in M is an equivalence class of functions
called horofunctions, which are well-defined up to constants. This definition of ideal
boundary has the benefit of generality that it can be defined for any non-compact
metric spaces, but it is rather difficult to study the geometry of manifolds in terms
of horofunctions alone.

For a non-compact complete Riemannian manifold M, the ideal boundary can
be defined in a more geometric way. We define a point at infinity by a direction,
which is an equivalence class of rays. We will assume once and for all that all
geodesics on M are parametrized by arclength. A ray v :[0,00) & M is defined as
an isometric imbedding of [0,00) in M. For a given ray 7, another ray o is said to
be asymptotic to v if there is a sequence of minimizing geodesics {o; : [0,{;] — M},
such that lim;_,o 05(0) = o(0) and 0;(l;) = v(t;) for some divergent sequence {t;}
and 0'(0) = lim;j_e 05(0), where 0'(0) is the tangent vector to o at 0. We denote
by o > v when o is asymptotic to 7. If a ray o is a sub-ray of a ray 7, it is denoted
by o C 7.

In the Euclidean space, parallel lines are pointing same direction, and hence are
said to define a point at infinity. It is therefore quite tempting to say that in an
open Riemannian manifold asymptotic rays define a point at infinity. The problem
with this argument is that in general the asymptotic relation is not an equivalence
relation and some additional considerations are needed. In Lewis [10], Nasu [11],
this problem with the asymptotic relation was circumvented as follows: A point ps
at infinity is defined as a maximal set of rays such that a ray asymptotic to one
ray in pe is asymptotic to each ray in ps. Denote by M., the set of all points
at infinity, which is also called the ideal boundary of M. This definition of ideal
boundary looks more geometric, but the way equivalence relation is defined from
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the asymptotic relation is rather artificial and its geometric meaning is not easy to
comprehend at first glance.

The above two definitions of ideal boundary do not seem to have much in common.
In order to demonstrate the relationship between these two concepts, we need a
special kind of horofunctions, the so-called Busemann-functions, defined by rays.
The Busemann-function b, corresponding to a ray < is defined by

by(z) = lim (t - d(7(t),z)).
Since t — (t — d(7y(t),z)) is monotone increasing for ¢ > 0 and bounded above by
d(v(0),z), it converges uniformly on every compact subset of M. Since distance
functions are Lipschitz continuous with Lipschitz constant 1, so are Busemann-
functions. For any ray v, it is clear that the Busemann-function b, is a horofunction.
In fact, b, is a limit of distance functions [~d,4)] as t — oo in Cu(M).

A Busemann-function is not a smooth function in general. The differentiability
of Busemann-functions and horofunctions is studied in Eberlein (4], Yim [14]. The
level set H,(t) = b5 (t) of the Busemann function of a ray - is called a horosphere
of 7. A horosphere is not always a smooth submanifold, but it is in some sense a
limit of metric spheres Busemann [2], Shiohama [13] such as

Hy(a) = Jim Syp)(t —a), a€by(M).

The basic properties of asymptotic rays and Busemann-functions are studied
in many literatures, and we summarize some necessary results as follows. (See
Busemann (2, 3] and Shiohama [13] for details.)

Proposition 1. Let M be a complete open Riemannian manifold and ~ : [0, 00) —
M arayin M.

(1) For each p € M, there is a ray o, asymptotic to v with o(0) = p.

(2) If o > v and y1 C ¥ C 72, then 0 > v1 and o > 2.

(3) Ifop >y foralln=1, 2, 3, ... and 0, = 0, then o > 7.

(4) A ray o is asymptotic to a ray v if and only if for allt > 0

by(0(?)) = by(0(0)) +¢.

In particular, Vby = o' along o(0,00), and o'(t) L H,(o(t)) if H, is regular at
o(t).

(5) If o » v, then for ¢ = o(t), t > 0, there exists a unique ray oq = 7y with

04(0) = g and we have o4 C 0.
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Let’s for a moment denote by B(M) C OM the set of all Busemann-functions
defined on M. Note that the horofunctions in M are in fact defined up to constants
and this rule applies to Busemann-functions too.

Theorem 1. For a complete noncompact Riemannian manifold M, there is a one-
to-one correspondence between My, and the set of all Busemann-functions B(M) on
M up to constants. In other words, by — b, = constant for two rays v and o if and

only if v and o belong to the same point in M.

Proof. Assume that v and o are two rays such that b,—b,= constant. By Proposition
1(4), for any ray p asymptotic to vy, we have by(p(t)) — by(p(0)) =t for each ¢ > 0.
However, by the assumption, we have b,(p(t)) — by(p(0)) = bs(p(t)) — bs(p(0)), and
again by Proposition 1(4) p is asymptotic to o. Therefore, if a ray is asymptotic to
either one of v and o, then it is asymptotic to the other as well, which clearly means
v and o belong to same equivalence class in M.

We now assume that v and o represent the same point at infinity. By the defini-
tion of equivalence relation for M., we know that a ray asymptotic to either one of
these two rays must be asymptotic to the other as well. Therefore by Proposition
1(4), we know that an asymptotic direction of a ray coincides with the gradient direc-
tion of the corresponding Busemann-function. Hence we have Vb, = Vb, whenever
both functions are differentiable. We now use a standard argument to prove that
these two Busemann-functions agree up to a constant. For the sake of completeness,
we provide a proof.

Put u = by — by. The Busemann functions b, and ¢ are Lipschitz continuous
and hence differentiable almost everywhere on M. We therefore see that u is also
differentiable almost everywhere and Vu = 0 whenever it exists in M. Let B C M be
a convex open ball. Then B is diffeomorphic to an open ball in R™. Since the space
of smooth functions C*°(B) is dense in the Sobolev space H?(B) and u € HV?(B),
there is a sequence of smooth functions {u,} which converges to u in H?(B). In
particular, we have limy_y00 ||Vn||2 = 3, where || - || denotes the L? norm on B. For
any two points «, y € B, let ay be the minimizing geodesic in B such that ay(0) = z,
ay(1) = y. Then we have u,(z) ~ un(y) = fol Vupn(ay(t))ey(t)dt, and hence

1
/B (un(®) — un(y))dy = /B /0 Viin (y (8)) ) () dtdy
1
=/ /Vun(ay(t))a;/(t)dydt.
0 B
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Since limp 00 || Vun|l2 = 0, applying Hoélder’s inequality, it is not difficult to see that
for any t € [0,1]

Jim /B Vg (ay(t)) oy, (t)dy = 0.

Hence the left hand side of the above equation vanishes as n — 0o, and we have
= lim [ (un(o) = un(w)ely

= lim (un(m)vol(B)—/Bun(y)dy>

n-—00

= u(z) vol(B) - lim /B n (1) dy.

Since = € B is arbitrary, u is constant on B, and hence u is a constant function on
M. O

From this theorem, we see that a point p,, € My is actually an equivalence class
of rays which define same Busemann-function up to constants. If b, is a Busemann-
function such that p. is identified with the class [b,], we will denote by po, = [7]

the equivalence class of rays defining the same Busemann-function up to constants.

Corollary 1. For a complete open Riemannian manifold M, there is an embedding
My — OM.

There are examples of horofunctions which are not Busemann-functions for any
ray, and hence the above inclusion may not be surjective (see Yim [15]). In general
these non-Busemann horofunctions do not carry much of geometry in Riemannian
manifolds, and we will mostly concentrate on M.

In the Euclidean space, a ray is a straight line and an asymptotic ray is a parallel
line. Therefore the asymptotic relation or the parallelism is an equivalence relation,
and asymptotic lines define a direction which corresponds to a point at infinity.
For a general Riemannian manifold, one may want to try the same argument. In
fact, on Hadamard spaces, which are simply connected manifolds with non-positive
curvature, the asymptotic relation is indeed an equivalence relation and defines an
ideal boundary. However, for more general Riemannian manifolds, the asymptotic
relation is not an equivalence relation and it has been a major obstacle in the study
of asymptotic geometry of open manifolds. It is therefore meaningful to know the
optimal condition for the asymptotic relation to be an equivalence relation.

A compact domain € in a Riemannian manifold is called convez if a minimal
geodesic between any two points in {2 is contained in 2. We can generalize this
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concept to a compactified open manifold, and consider a connection between an
interior point and a point at infinity. We then have the following definition.

Definition 1. The ideal boundary My of a noncompact complete Riemannian
manifold M is called convez if for any ¢ € M and po = [y] € M there is a ray o
such that by — by = constant and o(0) = g.

If by — b, = constant, then o € [7] and we say that the point ¢ = ¢(0) and
the point [y] € My are connected by the minimal geodesic 0. So the convexity
of the ideal boundary of a complete non-compact Riemannian manifold is a sort of
geodesic completeness on M U Myo. Note that in Yim [15] a surface satisfying the
above condition are called weakly convex, and a convex ideal boundary satisfies a
stronger condition that every horofunction in 0M can be connected to each interior
point. But, as mentioned earlier, we will only consider M., and our definition of
convex ideal boundary as above suffices.

Theorem 2. For a complete open Riemannian manifold M, the ideal boundary My,
is convez if and only if the asymptotic relation > is an equivalence relation.

Proof. Assume that > is an equivalence relation. For any ¢ € M and p., € My, let
o :[0,00) & M be a ray such that 6(0) = ¢ and ¢ > ~ for each ray v € poo = [7].
Then by the symmetry for any v € po, we have v > o. If a ray p is asymptotic to
any ray < € Peo, by the transitivity, we have p > o. Then by the definition of M,
we have o € [7], and hence M, is convex.

Suppose My, is convex. For any ray v, let o : [0,00) = M be a ray such that
o > 7 and consider a point ¢ = o(tg) for some ¢y > 0. By the convexity of My, there
exist a ray og : [0,00) = M such that ¢,(0) = ¢ and b,, — b, = constant. Then, by
Proposition 1, we see that o4 > 7 and o4 C 0. Therefore b; — b,, = o is a constant
and so is by — by. We can now conclude that if v > ¢ then b, — b,= constant. Since
bs — by= constant implies v > o and ¢ > v, it is clear that > is an equivalence
relation. il

As a consequence of this theorem, if the ideal boundary M,, is convex then it
can be identified as the set of all asymptotic classes of rays. In other words, a point
at infinity is a direction defined by mutually asymptotic rays.
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3. A POINT AT INFINITY

In this section, we study the geometric property of a point at infinity. In partic-
ular, we compare the points at infinity with the ordinary interior points and study
the similarity and difference.

For an ordinary interior point p € M, a point ¢ € M is called a cut point of p if
an extension of a minimal geodesic between p and q is not minimal anymore. A ray
plays the role of minimal geodesic between an interior point and a point at infinity,
and we can consider an analogous concept as the cut point for a point at infinity.
A ray o : [0,00) & M asymptotic to v is said to be mazimal if for any ¢ > 0 its
extension as a geodesic to o, : [—€,00) = M is not an asymptotic ray to v. The
initial point ¢(0) of a maximal asymptotic ray is called a cut point of v. We denote
by Cut(y) the cut locus of a ray «, which is by definition the set of all cut points of
v. By the definition of M, we see that a cut point of a ray depends only on the
class, the point at infinity. In other words, if [7] = [0] = poo then Cut(y)= Cut(o)
and we may consider Cut(peo)-

For a cut point ¢ of ps, let o : [0,00) — M is a maximal ray asymptotic to
Y € Poo such that y(0) = g (Note that such v may not be unique.). Then there
are two possibilities. Either the extension o. is not a ray or it is a ray but not
asymptotic to . If it is not a ray then it can not be a connection between the
point o.(—¢) and any point at infinity, but if it is a ray not asymptotic to v then
it can be a connection between o.(—¢) and some point at infinity other than pe.
In the first case, where the maximal asymptotic ray is not a sub-ray of another ray,
the maximal ray is called terminal and its initial point is called a terminal point
of . It had been a question of some interest, first asked by Busemann, whether a
maximal asymptotic ray can be a proper sub-ray of another ray and therefore the
above distinction of two cases is really meaningful. This interesting phenomenon is
something quite different from the ordinary point case, and the following theorem

answers when the two cases coincide.

Theorem 3. If the ideal boundary My, is convez, then each cut point of a ray 7y is

a terminal point of an asymptotic ray to .

Proof. For ¢ € Cut(y) let o : [0,00) - M be a ray asymptotic to v such that
o(0) = p. Suppose ¢ is not a terminal point of . Then o can be extended as a
ray g : [—€,00) = M. Then by Proposition 1(5), the sub-ray os is the unique ray
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asymptotic to o at crg(—%). Since M, is convex, by Theorem 2, the asymptotic
relation > is transitive and hence oL >, which implies that p is not a cut point of
~ and it is a contradiction. O

We now study in detail the structure of the cut locus of a point at infinity. For an
ordinary point the cut locus is where the distance function fails to be differentiable,
and it has many interesting properties. Busemann-functions play the role of distance
functions from points at infinity, and in many aspects they behave much like distance
functions.

For an ordinary point p € M the cut locus Cut(p) is a closed set and it is the
image of the exponential map from the cut locus in the tangent space T,M. For
a point po € My, however, nothing even similar to the exponential map can be
defined and in fact there exists an example of cut locus which is not even closed
(see Nasu [11]). This example of cut locus which is not closed demonstrates that
the structure of the cut locus of a point at infinity can be quite different from that
of an ordinary point, and it is very difficult to use any analytic tools to study its
geometry. For p € M the distance function d, : M — R is a smooth function on
M\ Cut(p). Unfortunately, Busemann-functions are horofunctions, which are limits
of distance functions in C,(M), and hence they are only Lipschitz continuous.

Since Busemann-functions are only continuous, without any extra conditions the
first order differentiability is the only possibility one can hope for. If there are
two distinct rays emanating from a peint p and asymptotic to a ray v, then b, is
not differentiable at p. The set of all such points is denoted by Ca(y). In other
words, for each point ¢ € Ca(7y) there are at least two rays emanating from ¢ and
asymptotic to y. Let S(v) denote the set of points where the Busemann-function
by is not differentiable. It is quite clear that all these concepts only depend on
the equivalence class in M, represented by ~, and they also enjoy the following
properties (See Busemann [3], Innami [9]).

Proposition 2. Let M be a complete noncompact Riemannian manifold and let v
be a ray. Then

(1) Ca(v) € S(7) € Cut(v).
(2) Ca(7) is dense in Cut(y).
(3) S(v) is of measure zero.
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In Proposition 1(5), we see that if ¢ > v then a sub-ray o4 : [0,00) — M with
04(0) = g = oft) for ¢ > 0 is a unique ray asymptotic to v at g, which means
q ¢ Ca(v). In fact, a stronger statement is still true, and it is not very difficult to
prove the following statement using Proposition 1(4) (See Shiohama [13]).

Proposition 3. Let M be a complete noncompact Riemannian manifold and let v
be a ray. If o > vy, then o(t) ¢ S(v) for all t > 0.

As mentioned earlier, the cut locus of a point at infinity may not be closed.
However, if it is closed, we have the following.

Proposition 4. Let M be a noncompact complete Riemannian manifold. If the cut
locus Cut(y) of a ray ~v is closed, then the Busemann function by of v is C! on
M \ Cut(v).

Proof. For any p ¢ Cut(y), since S(v) C Cut(y) and Cut(y) is closed, there exists
an open neighborhood U of p on which the Busemann-function b, is differentiable.
For any q € U, let ¢; — ¢ be a sequence in U such that

Vb, () = v € T, M.

Let v; : [0,00) — M be a ray such that v; > v and v;(0) = gi. Then Vb,(g;) = 7;(0)
and a subsequence of {7;} converges to a ray 7o such that 4,(0) = v. Since a limit
of asymptotic rays is again asymptotic, g is asymptotic to «. Since Ca(v) C S(v)
and ¢ ¢ S(7v), a ray asymptotic to v is unique at gq. Hence v = Vb,(g) and Vb, is
continuous at gq. |

In the finite case, the cut locus consists of first conjugate points and points with
multiple minimal connections. In the case of a point at infinity, it is not easy to
define a conjugate point because the exponential map is not defined and in general
a variation through asymptotic rays does not give rise to a Jacobi-field along a ray.
We therefore use an indirect method to define the first conjugate point of a point at
infinity. Let «y : [0,00) = M be aray in M and R, = R,(t) be the tensor field along
7 defined by R, (t)V = R(V,%(t))7'(t) for any vector field V'(t) orthogonal to ¥'(t),
where R(:,-) is the curvature tensor of M. Then a matrix solution to the differential

equation

D"+R,D=0
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is called a Jacobi tensor, where D’ denotes the covariant derivative of D along 7.
Each Jacobi tensor, applied to a parallel normal vector field along v, gives rise to
an (n — 1)-dimensional space of Jacobi-fields along v when the dimension of M is n.
If v :[0,00) = M is a ray, for any s € (0, 00), the geodesic segment [0, s] has no
conjugate point on it and there exists a unique Jacobi-tensor D, such that

D,(0) =1d, D,(s)=0.

It is then easy to see that for each s the tensor D/ (0) is symmetric and 0 < s < ¢
implies D}(0) < D;(0), where T} < T means T» — T} is positive definite for tensors
Ty and Ty. Therefore, as s — oo, D.(0) increases monotonically and lim,_,, D%(0)
exists if and only if D/(0) is uniformly bounded for all s > 0.

If lim,, o0 D%(0) exists, then it is easy to see that Do def limg_s00 Dy also exists
and D/ (0) = lims_y00 D% (0). In this case, the tensor field Dy (t) along + is called the
stable Jacobi tensor in some literatures, for example in Eschenburg [5], Eschenburg
& O’Sullivan [6]. If the Busemann-function b, is C2-differentiable, then D’ (0) is
the shape operator of the horosphere b3 1(0), and one may want to think the stable
Jacobi tensor as a tensor field defined by the variation through rays asymptotic to +.
However this is not true in general because Busemann-functions are not C?, and it is
also quite difficult to integrate this field in order to study the behavior of neighboring
asymptotic rays. Nevertheless, the following definition still makes sense.

Definition 2. For a ray <y : [0,00) =& M in a complete open Riemannian manifold
M, q = ¥(0) is called a conjugate point of v if lim,_, D%(0) does not converge.

As mentioned earlier, the tensor D/, (0) is symmetric for each s > 0, and if ¢ = (0)
is a conjugate point of -y then there exists a vector v € TyM such that

(v, Dy (0)(v)) 7 oo

If we consider a finite geodesic, this definition of conjugate points clearly coincides

lim
$—0

with that of first conjugate points in the usual sense. The conjugate locus of a ray
7, the set of all conjugate points of v, will be denoted by Conj(). As in the case of
ordinary conjugate points in M, a conjugate point of a ray is also a cut point.

Theorem 4. Let M be a noncompact complete Riemannian manifold. Then for any
ray vy in M,

Conj(y) C Cut(v).
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Proof. Assume ¢ = v(0) is a conjugate point of v and let {D;} be as above. It then
suffices to show the extension -, : [—&,00) = M of v is not a ray for ¢ > 0. If the
geodesic segment 7. [—¢, 0] has a conjugate point on it, then . is clearly not a ray.
We therefore assume that v.[—¢, 0] has no conjugate point and hence there exist a
unique Jacobi-tensor D_, along 7.[~¢, 0] such that D_.(—¢) = 0 and D_.(0) = Id.
Since D(0) increases monotonically and unbounded as s — oo, for large enough
s > 0, there exists a vector v € T;M such that

(v, (D(0) = D_(0)) (v)) > 0.

Let v(t) be a parallel vector field along v.[—¢, s] such that v(0) = v, and let V (¢),
—£ < t < s, be a piecewise smooth vector field defined by

V(t) = D_.(t)(v(t)) for —e <t <0,
V(t) = Ds(t)(v(t)) for 0<t<s.

Then the index form Ind(V,V) of V is

Ind(V,V) = / (VLY - (V" RV V)t
= (v, (D_.(0) - D4(0))(v)) < 0.

Therefore v.[—¢, s] is not a minimal geodesic, and hence ~, is not a ray. O

For an ordinary interior point, a cut point is either a point with multiple minimal
connections or a first conjugate point. The proof of this fact involves the exponential
map or Jacobi-fields along minimal geodesics. These concepts are not natural for a
point at infinity, and it looks quite difficult to characterize points in the cut locus
any further without more conditions. It is not even known whether Cut(y) is of

measure zero while S(v) is dense in Cut(7y) and of measure zero (see Proposition 2).
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