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RELATED FIXED POINT THEOREM FOR SET VALUED
MAPPINGS ON TWO METRIC SPACES

R. K. NAMDEO AND B. FISHER

ABSTRACT. A related fixed point theorem for set valued mappings on two complete
metric spaces is obtained.

Let (X,d) be a complete metric space and let B(X) be the set of all nonempty
subsets of X. As in Fisher [2] we define the function §(A, B) with A and B in B(X)
by 6(A, B) = sup{d(a,b) : a € A, b € B}. If A consists of a single point a we
write 6(A, B) = &(a,B). If B also consists of single point b we write 6(4,B) =
§{a, B) = d(a,b). It follows immediately that §(4, B) = §(B, A) > 0, and §(4, B) <
§(A,C) +6(C,B) for all A, B and C in B(X).

If now {An : n=1,2,...} is a sequence of sets in B(X), we say that it converges
to the closed set A in B(X) if

(i) each point a € A is the limit of scme convergent sequence
{an € 4 : n=1,2,...},

(i) for arbitrary € > 0, there exists an integer N such that 4, C A; for n > N,
where A; is the union of all open spheres with centres in A and radius .

The set A is then said to be the limit of the sequence {A,}.

Now let F' be a mapping of X into B(X). We say that the mapping F is con-
tinuous at a point z in X if whenever {z,} is a sequence of points in X converging
to z, the sequence {Fz,} in B(X) converges to Fz in B(X). We say that F is
continuous mapping of X into B(X) if F is continuous at each point z in X. We
say that a point z in X is a fized point of F if z is in Fz. If A is in B(X) we define
the set FA=|J,c4 Fa.
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In the following, we give a new related fixed point theorem. The first related
fixed point theorem was the following (see Fisher [3]).

Theorem 1. Let (X,d;) and (Y,d2) be complete metrics spaces. If T is a mapping
of X intoY and S is a mapping of Y into X satisfying the inequalities

d2(T'z, T'Sy) < cmax{di(z, Sy), da(y, Tz}, da(y, T.S'y)},

d1(Sy, STz) < cmax{dqs(y,Tx),d1(z, Sy),d1(z, STz)}

forallz in X andy in Y, where 0 < ¢ < 1, then ST has a unique fized point z in
X and T'S has a unique fized point w in Y. Further, Tz = w and Sw = 2.

Related fixed point theorems were later extended to two pairs of mappings on
metric spaces, see for example Fisher & Murthy [4]. The next generalization was
to consider related fixed point theorems for set valued mappings, see for example
Chourasia & Fisher [1] and Fisher & Turkoglu [5].

The following theorem was proved in Fisher & Turkoglu [5].

Theorem 2. Let (X,d1) and (Y,da) be complete metrics spaces, let F' be mapping
of X into B(Y) and G be mapping of Y into B(X) satisfying the inequalities
d2(T.’E, TSy) < Cma.X{dl(.'L', Sy)’ d2(ya T.’L'), d?(yv T’Sy)}a
dl(Sy7 ST:B) S cma.x{dz(y, T"B)a dl(-’L’, Sy)’ dl(xa ST:E)}

for all z,2’ in X andy,y' in Y, where 0 < c < 1. If F is continuous, then GF has
a unique fized point z in X and FG has a unique fized point w in Y .

We now prove the following related fixed point theorem for set valued mappings.

Theorem 3. Let (X,d1) and (Y, dz2) be complete metrics spaces, let F' be a mapping
of X into B(Y) and let G be a mapping of Y into B(X) satisfying the inequalities
61(Gy, Gy')6,(GFz,GFz') _
< cmax{[dl(a:,x')]z, di(z,z')62(Fz, Fz'), di(z,2')01(Gy, Gy'),
8(Fz, Fa')6:1(Gy, Gy')}, (1)
82(Fz, Fx')62(FGy, FGY')
< emax {[da(y, ¥ )1 d2(v,4)61(Cy, GY'), da(y,y)02(Fz, Fa'),
61(Gy, Gy')d2(Fz, Fz')}  (2)
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for all z,z' in X and y,y inY, where 0 < c < 1. If either F or G is continuous,
then GF has a unique fized point z in X and F'G has a unique fized point w in Y.
Further, Fz = {w} and Gw = {z}.

Proof. Let z1 be an arbitrary point in X. Define sequences {z,} in X and {y,} in
Y as follows. Choose a point y; in Fz; and then a point x5 in Gy;. In general,
having chosen z, in X and y, in Y, choose a point z,+; in Gy, and then a point
Ynt1 in Fappg forn=1,2,....

We will first of all suppose that di(2n,2p+1) = 0 for some n. Then putting
Ty = Tn+1 = %, We have

2= 2Tpny1 € Gy, C GFz, C GFz (3)
and so z is a fixed point of GF.

Now,
Yn, Ynt1 € Fz2 C FGy, (4)

and on putting y, = w, we get

w € Fz C FGuw, (5)
showing that w is a fixed point of F'G. Then from (3) we have

z€ Gw C GFz. (6)

Similarly, if d2(yn,yn+1) = 0 for some n, then there exist z in X and w in Y
satisfying (5) and (6).
Applying inequality (1) and (5) and (6), we get
81(Gw, 2)6:(GFz,2) < 6;(Gw,Gw)6:(GFz,GFz)
< ¢61{Gw, Gw)do(Fz, Fz)

and so either

Gw = {2} (M
or
01(GFz,GFz) < ¢b2(Fz,Fz) < cda( FGw, FGw). (8)
Similarly, using inequality (2) and (5) and (6), we can prove that either
Fz = {w} (9)
or

02(FGw, FGw) < ¢61(Gw, Gw) < ¢6;(GFz,GFz). (10)
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Now (7) and (9) immediately imply that
Guw = {2}, Fz={w}, GFz={z}, FGw = {w}. (11)
Next, (7) and (10), together with (5), imply that FGw = {w} and equations (11)
follow.
Similarly, (8) and (9) imply equations (11).
Finally, (8) and (10) imply that
01(GF2,GFz) < c03(Fz, Fz) < cbo( FGw, FGw) < ¢*6,(GFz,GFz) = 0,
since ¢ < 1. Equations (11) again follow.
It follows similarly that if d2(yn,¥yn+1) = 0 for some n then equations (11) will
again hold.
We will now suppose that di(zn, Znt+1) # 0 # d2(Yn, Yns+1) for all n. Then using
inequality (1), we have
d; (mn; wn-}—l)dl ($n+1 » $n+2)
< 61(GYn-1,Gyn)01(GF 2, GFTny1)
< cmax {[d1(Zn, Tn11))?, d1(Tn, Tn+1)02(FTn, FTny1),
d]. (mna a’n+1)51 (Gy’n-—la Gy’n)a 52(F$na Fw'n—}-l)dl (Gyn—l’ Gyn)}
< ¢01(Gyn—1, Gyn) max {61(GFxn_1, GFx,), 62(FGyn_1, FGyn)},

which implies that

d1(Zn+1,Znt2) < 61(GFzy, GFTnyit)
< emax {51(G’F:z:n_1,Gan),éz(FGyn_l,FGyn)}. (12)
Similarly, using inequalities (2) and (12), we get
d2(Yn+1, Yn+2)
< 82(FGyn, FGyn+1)
< cmax {61(GFzn, GFTp11), 62(FGyn_1, FGyn) }
< cmax {¢61(GFzn-1, GF2n), c82(FGyn—_1, FGyn), 02(F Gyn—1, FGyn) }
< cmax {61(GFxn-1, GFxy,), 02( FGyp—1, FGyn)} (13)
and it follows easily by induction from inequalities (12) and (13) that
61(GFzy,GFap11) < ¢ ! max {61(GFz1, GFx3),82(FGy1, FGy2) },
82(FGyn, FGynt1) < ¢ ' max {81(GFz1,GFx,),00(FGy1, FGy2)},  (14)
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forn=1,2,....
1t follows on using inequalities (12) and (14) that for r = 1,2,...

di(Tn+1, Tnyril)
< 61(GFzyn,GF2ny,)
< 61(GFzn,GFzpy1) + 61(GFxp41, GFopy2) + -+
+61(GFZptr-1,GFTnyr)
< (P o+ T ) max {81(GFzy, GFas), 82(FGyy, FGys)}

<e¢ (15)

for n greater than some N, since ¢ < 1. The sequence {z,} is therefore a Cauchy
sequence in the complete metric space X and so has a limit z in X. Similarly the
sequence {yn} is a Cauchy sequence in the complete metric space Y and so has a
limit win Y.
Now,
51(z, GF.’I:n) < dl(z, .’Bm+1) + & ($m+1, GF.’L‘n)

<d; (z, Zm—{-l) + 51(GF:IIm, GF:En)

< dl(za$m+1) +¢,
on using inequality (15) for m,n > N. Letting m tend to infinity, we see that
61(2,GFz,) < e for n > N and so

1}3%!{.10 GFz, ={z} = nh_)n;o Gyn, (16)
since ¢ is arbitrary. Similarly, we have
nli)n;o FGy, = {w} = nli)r{.xo Fz,. (17)
Now suppose that F' is continuous. Then
{w}= 7};1130 Fz, = Fz. (18)
Using inequality (1), we now have

01(Gw, Zrn41)01(GF 2, Zny2)
< 61(Gw, Gyn)81(GF2,GFzn1)
< cmax {[d1(z, xn+1)]2, di(z,zn41)02(F2, Frny1), di(2,Zn41)01(Gw,Gyn),
82(Fz, Fxn11)81(Gw, Gyn) }.
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Letting n tend to infinity and using equation (18), we get
51(Gw, Z)&l(GFZ, Z) =0

and so either
Guw = {z} (19)
or
GFz = {z}. (20)
It is obvious that if equations (18) and (19) or equations (18) and (20) hold, then
equations (11) hold.
By the symmetry, equations (11) again hold if G is continuous instead of F.
To prove uniqueness, suppose that GF has a second fixed point z'. Then 2z’ is in
GF2' and there exists a point w’ in 2’ with 2’ in Gw'. On using inequality (1), we

have

51 (G, Gw'Y0(GFZ',GF?') < cbo(F2', F2')61(Gw', Gu')
< cbo(F7, F2)61(GFZ',GF?'),

which implies that either §;(Gw’, Gw') = 0, and hence

Guw' = {z}, (21)

or
61(GFZ',GFzZ') < c62(F7', F2') (22)
< edo(FGw', FGu'). (23)

Similarly, using inequality (2), we get either

F7 = {u'}, (24)

or
5o(FGw', FGw') < ¢61(Gw', Gu') (25)
< c61(GFZ,GF?'). (26)

It follows easily that if (21) and (24) hold, or (21) and (25) hold, or (22) and
(24), or (23) and (26) hold, then

Gu' = {7}, F ={w'}, GFZ ={2'}, FGuw' ={w'}. (27)
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Finally, using inequality (1) and equations (11) and (27), we get

[di(z,2)]? = 61(Gw, Gw')61(GFz,GF7')
< cmax {[d1(z, 2))?, d1(2,2')82(Fz, F2'), d1(z, 2)61(Gw, Gw'),
82(Fz, Fz')61(Gw, Guw')}
= cdy(z, ') max{di(z, 2'), da(w, w') }
which implies that either z = 2’ or di(z, 2') < cda(w,w’)
Similarly, applying inequality (2), we can prove that either w = w' or da(w,w’) <

cdi(z,2') and the uniqueness of the fixed points follow. This completes the proof of
the theorem. O

If we let F' be a single valued mapping of X into Y and let G be a single valued
mapping of ¥ into X, we obtain the following corollary.

Corollary 3.1. Let (X,d;) and (Y, d2) be complete metric spaces, let F' be a mapping
of X into Y and let G be a mapping of Y into X satisfying the inequalities

d1(Gy, Gy )d1(GFz,GFx')
< cmax {[dl (z, :1;')]2, di(z,z')d2(Fz, Fz'),di(z,2')d;1 (Gy, GY'),
do(Fz, Fz')d1 (Gy, Gy')},
ds(Fz, Fa')da(FGy, FGy')
< emax {[da(y, ¥))%, da(y, ¥')d1(Gy, GY'), da(y, ¥/ )do(F'z, Far'),
di1(Gy, Gy )da(Fz, Fz')}
for all z,z’ in X and y,y’ inY, where 0 < ¢ < 1. If either F or G is continuous,

then GF has a unique fized point z in X and FG has a unique fized point w in'Y .
Further, Fz = w and Gw = z.
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