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Mandelbrot sets and its generalizations have been extensively studied by using the Picard
iterations. The purpose of this paper is to study superior Mandelbrot sets, a new class of
Mandelbrot sets by introducing the Mann iterative procedure for polynomials Q.(z) := 2"
+ ¢. We generate some superior Mandelbrot sets for different values of n (= 2) and these
new figures are exciting and fascinating.
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1. INTRODUCTION

Perhaps the Mandelbrot set is the most popular object in fractal theory. It is believed
that it is not only the most beautiful object, which has been made visible but the most
complex also. This object was given by Mandelbrot (1979) in 1979 and has been the
subject of intense research right from its advent.

It is known to us that all the complex quadratic functions are topologically conjugate
to the complex quadratic function Qc(z) = 22+ ¢. Every Julia set for Qc(z) = 22+ ¢ is either
connected or totally disconnected. The Mandelbrot set works as a locator for the two
types of Julia sets. Each point in the Mandelbrot set represents a c-value for which the
Julia set is connected and each point in its complement represents a c-value for which the
Julia set is totally disconnected (c¢f. Crownover 1995; Devaney 1992; Holmgren 1994;
Peitgen, Jirgens & Saupe 1992¢, 1992a).

In the early 1980’s, Douady & Hubbard (1984) started the study of structure of the
Mandelbrot set. They proved that the Mandelbrot set is connected. They also gave an
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outstanding conjecture that this set is locally connected (see also Peitgen & Richter 1986),
which was later proved by Shishikura (1998) in 1991 (¢f. Peitgen, Jiirgens & Saupe 1992c¢,
p. 425).

The Mandelbrot set for quadratics has been studied rigorously (see Beardon 1991; Crown-
over 1995; Devaney 1992; Holmgren 1994; Peitgen, Jurgens & Saupe 1992¢, 1992a; Stein-
mnetz 1993). Branner & Hubbard (1988), in the study of the dynamics of cubic polynomi-
als, produced the first extensive study of the analog of the Mandelbrot set for cubics. As
there are two critical orbits for cubics, the study of the Mandelbrot set for cubics is much
complicated than that of quadratic functions (¢f Devaney 1992).

In 2000, Rochon (2000) gave generalizations of the Mandelbrot set in three and four
dimensions. He also proved that the generalized Mandelbrot set in four dimensions is con-
nected.

Instead of using Picard iteration procedure in functions to generate Mandelbrot sets, we
introduce the Mann iterative procedure to define superior Mandelbrot sets. Superior escape
criterions in the context of superior Julia sets are studied in Rani & Kumar (2004). These
criterions are applicable in generation of superior Mandelbrot sets as well.

The purpose of this paper is to present some Mandelbrot sets for Q.(z) = 2™ + ¢, for
n=2,3,4,5.

2. PRELIMINARIES

Basically there are two types of feedback machines (¢f. Peitgen, Jiirgens & Saupe 1992b,
1992¢, 1992a).
(i) One-step machine,
(i1) Two-step machine.
One step machines are characterized by Peano-Picard iterations (generally called Picard

or function iterations) formula

Znar = f(2q),
t

One step

where f(z) can be any function of z. It requires one number x,, as input and returns a new
number z,,; as better understood by the following diagram.
In two-step feedback machines, output may be computed by a formula of the type

Tntl = g(an, xn—l)-
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@ Processing r—‘———>@

Feedback line

t

Two steps

It requires two numbers x,, and -1 as input and returns a new number Tp .

Mann iterations (c¢f. Definition 3.1) may be considered excellent examples of two-step
feedback processes. In the Mann iterative procedure, we use a parameter s € [0,1] C R.
Here, in function g, in the place of z,, and z,,—; we use f(z,) and z, respectively. Thus

g1 = g(f(zn), zn) = sf(zg) + (1 = s)zp.

Two steps

One step

At s = 0, there is no change in the input and at s = 1, two-step machine works as a
one-step machine.

We adhere to the standard notations and definitions from Beardon (1991), Devaney (1992),
Holmgren (1994), Peitgen, Jirgens & Saupe (1992c, 1992a) and Rani & Kumar (2004). In
all that follows C stands for the complex plane.

Let X be a non-empty set and f : X — X be any function. For a point 2y in X, the
Picard orbit (generally called orbit or trajectory ) of f is the set of all iterates of a point zg,
that is,

{Zn 2 = f(zp—1),mn=1,2,...}.

Definition 2.1. The Mandelbrot set M for the quadratic Q.(z) = 2% + c is defined as the
collection of all ¢ € C for which the orbit of the point 0 is bounded, that is,
M={ceC:{Q*0):k=0,1,2,...} is bounded},
where Q2(2) = z, Q¥1(2) = Q(QF(2)) fork = 0,1,2,. .. .
We choose the initial point 0, as 0 is the only critical point of ()., (i. e., the only point for

which Q. (z) = 0) and the orbit of 0 is called the critical orbit. To check whether the orbit

is bounded or not we have the following well-known result.

Theorem 2.1. If |c| > 2 and |z| > c, then the orbit of z escapes to co. In particular, the
point c is not in M.
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Remark. Recall that if —2 < ¢ < 0.25, the iteration of the critical point O is bounded
and the Julia set is connected. Thus, the interval [—2, 0.25] on the real axis belongs to the
Mandelbrot set M. In fact, ¢ = —2 is the only point in M which has an absolute value
equal to 2 (see Crownover 1995; Peitgen, Jiirgens & Saupe 1992¢, 1992a).

3. SUPERIOR MANDELBROT SET

Let A be a subset of complex numbers such that f : A — A. For g € A, construct a

sequence {z, } in the following manner.

z1 = s1f(@o) + (1 — 51)x0,
T = Szf(xl) + (1 - 82).’131,

Tn = Snf(Tn-1) + (1 = 8p)Zn-1,

where 0 < s, < 1 and {s,} is convergent to a non-zero number.

Definition 3.1 (Mann (1953)). The sequence {z,,} constructed above is called the Mann se-
quence of iterates or the superior sequence of iterates. We may denote it by SO(f, zo, {sn})-
In all that follows, we take s, = s,n = 1,2, ... and hence :

Tp =8f(Tp-1)+ (1 —8)Tp-1, forn=1,2,....
Now we define the Mandelbrot set for
Qc(z) = 2"+,
where n = 2, 3,4, ... with respect to superior iterates.

Definition 3.2. Superior Mandelbrot set SM for the n-th degree polynomial Q.(z) = 2" +c
is defined as the collection of all ¢ € € for which the orbit of the critical point 0 is bounded,
ie.,

SM = {ceC:{Q%0):k=0,1,2,...} is bounded},

where Q9(2) = z, QFt1(2) = sQ(Q%(2)) + (1 — s)Q%(2) fork =0,1,2,....
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4. THE SUPERIOR CRITERIONS

The escape criterions play a crucial role in the analysis (and generation) of Mandelbrot
and superior Mandelbrot sets. The escape criterions for superior filled Julia sets (¢/ Rani
& Kumar 2004) are applicable in the study and generation of superior Mandelbrot sets as
well.

Followings are the escape criterions for some of the superior Julia sets.

(i) The escape criterion for Q.(z) = 22 + cis max{|c|, (2/s)}.
(i) The escape criterion for Q.(z) = 2% + ¢ is max{|c|, (2/5)'/?}.
(iii) The escape criterion for Q.(z) = 2* + ¢ is max{|c], (2/5)'/3}.
(iv) The escape criterion for Q.(2z) = 2° + cis max{|c|, (2/5)"/4}.

We remark that although the escape criterion (i) for z2 4 ¢ works well for cubics, bi-
quadratics and polynomials of higher degrees as well, yet further refined escape criterions
(i1), (iii) and (iv) are preferable as it decreases execution time when a computer program
executes to generate superior Mandelbrot sets. However, as nn becomes large, hopefully the
difference of execution times of 2™ + ¢ and 2" + ¢ becomes negligible.

5. GENERATION OF SUPERIOR MANDELBROT SETS

To generate a Mandelbrot set for quadratic functions, an algorithm may be found in
Devaney (1992), Holmgren (1994) and Peitgen, Jiirgens & Saupe (1992c, 1992a). See a
Mandelbrot set in Figure 1.

For each function of any degree, by varying the parameter ¢ of the superior iterative
procedure, different Mandelbrot sets are generated. We have written programs in C++ to
generate superior Mandelbrot sets. Some of the exciting figures are presented as well.

5.1. Superior mandelbrot sets for Q.(z) = 2% + ¢

For s = 1, we get usual Mandelbrot set. See superior Mandelbrot sets for s =
0.8,0.5,0.3 and 0.01 in Figures 2, 3, 4 and 5, respectively.

5.2. Superior mandelbrot sets for Q.(z) = 2% + ¢

When s = 1, we obtain the usual Mandelbrot set (see Figure 6). Superior Mandelbrot
sets are constructed in Figure 7 and Figure 8 when s = 0.5 and s = 0.1 respectively.
Notice that a dotted horizontal line drawn through any of these figures (as shown in Figure
6) divides these figures into two equal parts.
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Figure 1. Mandelbrot set for quadratic polynomial

Figure 2. Superior Mandelbrot set for quadratic polynomial with s = 0.8

5.3. Superior mandelbrot sets for Q () = z4 + ¢

Superior Mandelbrot sets for the biquadratic function in Figure 9 and Figure 10 corre-
spond to 5 = 1 and 0.1 respectively. Note that Figure 9 and Figure 10 may be divided into
three equal parts. Dotted lines in Figure 9 show the subdivisions.
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Figure 3. Superior Mandelbrot set for quadratic polynomial with s = 0.5

Figure 4. Superior Mandelbrot set for quadratic polynomial with s = 0.3

5.4. Superior mandelbrot sets for Q.(z) = 2% + ¢

We have generated superior Mandelbrot sets for 2° + ¢ taking s = 1 and s = 0.1 (see
Figure 11 and Figure 12 respectively). Notice that both the figures may be divided equally
into four parts. This has been shown in Figure 12 by drawing dotted lines.

A glance at Figures 1-12 suggests a striking feature that each figure is formed of (n—-1)
equal parts, where n is the degree of the palynomial Qc(2) = 2" + ¢. So, if n — o0 in the
superior Mandelbrot set, then the total number of equal components (of this set) will tend
{0 o0,
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Figure 5. Superior Mandelbrot set for quadratic polynomial with s = 0.01

Figure 6. Superior Mandelbrot set for cubic polynomial with s = 1

Should we conjecture that the superior Mandelbrot sets for Q.(z) = 2" + ¢ will look
like a circle when n is large?
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Figure 7. Superior Mandelbrot set for cubic polynomial with s = 0.5

Figure 8. Superior Mandelbrot set for cubic polynomial with s = 0.1

6. CONCLUDING REMARKS

We have used the superior escape criterions (¢f Section 4) to generate corresponding
superior Mandelbrot sets for 2" + ¢, n = 2, 3,4, 5. Unlike the usual Mandelbrot set for a



288 Rani, Mamita & Kumar, Vinod

Figure 9. Superior Mandelbrot set for biquadratic polynomial with s = 1

Figure 10. Superior Mandelbrot set for biquadratic polynomial with s = 0.1

function, we obtain more than one superior Mandelbrot set for the function, depending on
the value of s, Notice that for each value of s in a particular function, there are different
domains of ¢. Consequently, an entirely different superior Mandelbrot set is obtained for
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Figure 11. Superior Mandelbrot set for fifth degree polynomial with s = 1

Figure 12. Superior Mandelbrot set for fifth degree polynomial with s = 0.1

each s. This new concept of many superior Mandelbrot sets for a function includes all the
prejudices as a special case only.

In the study of the function 2" + ¢ (n > 2), we notice that each superior Mandelbrot
set is a composition of n — 1 equal parts. So, when n — oo, total number of equal parts in
the superior Mandelbrot set also tends to infinite. This raises a question. What will be the
shape of the limiting superior Mandelbrot set for 2™ + ¢ as n — co. Should we conjecture
a circle?
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