DOI QR코드

DOI QR Code

Euphorbia lathyris에서 분비되는 Latex 65kD 단백질의 특성규명

Characterization of 65 kD Protein in Latex Excreted from Euphorbia lathyris

  • 박희성 (대구가톨릭대학교 식물유전공학과)
  • 발행 : 2004.12.01

초록

Euphorbia lathyris의 유관세포로부터 분비되는 수용성 latex단백질을 10% SDS-polyacrylamide 전기영동으로 분리하여 특징적으로 잘 나타나고 있는 ELp65, ELp55, ELp43, ELp32 그리고 ELp23 등의 주요단백질을 확인하였다. 이들 latex 주요단백질들 중에서 ELp65는 ammonium sulfate 침전, gel permeation chromatography 그리고 ion exchange chromatography 등의 방법으로 순수 분리하였는데 ELp65의 N-terminal amino acid 서열분석에 의하면 이는 토마토의 p69a subtilisin-like pretense의 mature peptide의 앞부분과 강한 유사성을 지니고 있었으며 식물방어와 관련된 기능이 제시되었다. PCR증폭에 의하여 클로닝된 토마토의 p69a DNA를 probe로 이용하여 Southern blot hybridization을 수행한 결과 E. lathyris genome은 토마토의 subtilisin-like proteases와 유사한 정보를 지닐 수도 있는 3-5 유전자들로 구성된 gene family가 분석되었다.

Soluble latex protein fraction excreted from Euporbia lathyris laticifer was resolved by 10% SDS-polyacrylamide gel electrophoresis to identify distinctively displayed latex major protein bands including ELp65, ELp55, ELp43, ELp32 and ELp23. Among them, ELp65 was purified by ammonium sulfate precipitation, gel permeation chromatography and ion exchange chromatography. Its N-terminal amino acid sequencing revealed its homology to the leading region of mature peptide of tomato p69a subtilisin-like protease, suggesting a certain role involved in plant defense system. In the analysis of Southern blot hybridization using PCR-amplified tomato p69a probe DNA, E. lathyris genome was suggested to have a gene family consisting of 3-5 gene members putatively encoding subtilisin-like proteases.

키워드

참고문헌

  1. Amalou Z, Bangratz J, Chrestin H (1992) Ethrel (ethylene releaser)-induced increases in the adenylate pool and transtonoplast ΔpH within Hevea latex cells. Plant Physiol 98: 1270-1276 https://doi.org/10.1104/pp.98.4.1270
  2. Beintema JJ, Terwisscha van Scheltinga AC (1996) Plant lysozymes EXS 75: 75-86
  3. Broekaert I, Lee HI, Kush A, Chua NH, Raikhel N (1990) Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubbr tree (Hevea brasiliensis). Proc Natl Acad Sci USA 87: 7633-7637 https://doi.org/10.1073/pnas.87.19.7633
  4. Buttle DJ, Kembhavi AA, Sharp SL, Shute RE, Rich DH, Barrett AJ (1989) Affinity purification of the novel cysteine proteinase papaya proteinase IV, and papain from papaya latex. Biochem J 15: 469-476
  5. Cornish K (1993) The separate roles of plant cis and trans prenyl transferases in c-1,4-polyisoprene biosynthesis. Eur J Biochem 15: 267-271
  6. Decker G, Wanner G, Zenk MH, Lottspeich F (2000) Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional electrophoresis and microsequencing. J Electrophor 21: 3500-3516 https://doi.org/10.1002/1522-2683(20001001)21:16<3500::AID-ELPS3500>3.0.CO;2-O
  7. Glick BR, Tompson JE (1993) In Methods in Plant Molecular Biology and Biotechnology. CRC Press pp 38-40
  8. Jorda L, Coego A, Conejero V, Vera P (1999) A genomic cluster containing four differentially regulated subtilisin-like processing protease genes is in tomato plants. J Biol Chem 274: 2360-2365 https://doi.org/10.1074/jbc.274.4.2360
  9. Jorda L, Coego A, Conejero V, Vera P (2000) Characterization of P69E and P69F, two differentially regulated genes encoding new members of the subtilisin-like proteinase family from tomato plants. Plant Physiol 122: 67-73 https://doi.org/10.1104/pp.122.1.67
  10. Kush A, Goyvaerts E, Chye M, Chua N (1990) Laticifer- specific gene expression in Hevea brasiliensis (rubber tree). Proc Natl Acad Sci USA 87:1787-1790 https://doi.org/10.1073/pnas.87.5.1787
  11. Lynn KR, Clevette-Radford NA (1983) Isolation and characterization of euphorbain 1, a proteinase from the latex. Biochim Biophy Acta 746: 154-159 https://doi.org/10.1016/0167-4838(83)90069-9
  12. Lynn KR, Clevette-Radford NA (1985) Four serine proteases from the latex of Euphorbia tirucalli. Can J Biochem Cell Biol 63: 1093-1096 https://doi.org/10.1139/o85-136
  13. Meichtry J, Amrhein N, Schaller A (1999) Characterization of the subtilase gene family in tomato (Lycopersicon esculentum Mill.). Plant Mol Biol 39: 749-760 https://doi.org/10.1023/A:1006193414434
  14. Michaud D, Faye L, Yelle S (1993) Electrophoretic analysis of plant cysteine and serine proteinases using gelatin- containing polyacrylamide gels and class-specific proteinase inhibitors. Electrophoresis 14: 94-98 https://doi.org/10.1002/elps.1150140117
  15. Roshchina VV, Roshchina VD (1993) In The excretory function of higher plants. Springer-Verlag pp 25-66
  16. Subroto T, Sufiati S, Beintema JJ (1999) Papaya (Carica papaya) lysozyme is a member of the basic class II chitinases. J Mol Evol 6: 819-821
  17. Taylor AA, Horsch A, Rzepczyk A, Hasenkampf CA, Riggs DC (1997) Maturation and secretion of a serine proteinase is associated with events of late microsporogenesis. Plant J 12: 1261-1271 https://doi.org/10.1046/j.1365-313x.1997.12061261.x
  18. Tornero P, Conejero V, Vera P (1996) Primary structure and expression of a pathogen-induced protease (PR-P69) in tomato plants: similarity of functional domains to subtilisin- like endoproteases. Proc Natl Acad Sci USA 93: 6332- 6337 https://doi.org/10.1073/pnas.93.13.6332
  19. Tornero P, Conejero V, Vera P (1997) Identification of a new pathogen-induced member of the subtilisin-like processing protease family from plants. J Biol Chem 272: 14412- 14419 https://doi.org/10.1074/jbc.272.22.14412