References
- Akopyants, N.S., Clifton, S.W., Kersulyte, D., Crabtree, J.E., Youree, B.E., Reece, C.A., Bukanov, N.O., Drazek, E.S., Roe, B.A. and Berg, D.E (1998): Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol., 28, 37-53
- Asahi, M., Azuma, T., Ito, S., Ito, Y., Suto, H., Nagai, Y., Tsubokawa, M., Tohyama, Y., Maeda, S., Omata, M., Suzuki, T. and Sasakawa, C. (2000): Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J. Exp. Med., 191, 593-602 https://doi.org/10.1084/jem.191.4.593
- Audibert, C., Burucoa, C., Janvier, B. and Fauchere, J.L. (2001): Implication of the structure of the Helicobacter pylori cag pathogenicity island in induction of interleukin-8 secretion. Infect. Immun., 69, 1625-1629
- Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P.R., Naumann, M. and Meyer, T.F.(2000): Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol., 2, 155-164
- Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R. and Covacci, A. (1996): Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA, 93, 14648-14653
- Choi, J., Yoon, S.H., Kim, J.E., Rhee, K.H., Youn, H.S. and Chung, M.H. (2002): Gene-specific oxidative DNA damage in Helicobacter pylori-infected human gastric mucosa. Int. J. Cancer, 99, 485-490 https://doi.org/10.1002/ijc.10366
- Churin, Y., AI-Ghoul, L., Kepp, O., Meyer, T.F., Birchmeier, W and Naumann, M. (2003): Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J. Cell Biol., 161, 249-255 https://doi.org/10.1083/jcb.200208039
- Churin, Y., Kardalinou, E., Meyer T.F. and Naumann, M. (2001): Pathogenicity island-dependent activation of Rho GTPases Rac1 and Cdc42 of Rho GTPases Rac1 and Cdc42 in Helicobacter pylori infection. Mol. Microbiol., 40, 815-823
- Craanen, M.E., Blok, P., Top, B., Boerrigter, L., Dekker, W., Offerhaus, G.J., Tytgat, G.N. and Rodenhuis, S. (1995): Absence of ras gene mutations in early gastric carcinomas. Gut., 37, 758-762
- De Luca, A., Baldi, A., Russo, P., Todisco, A., Altucci, L., Giardullo, N., Pasquale, L., Iaquinto, S., D'Onofrio, V., Parodi, M.C., Paggi, M.G. and Iaquinto, G. (2003): Coexpression of Helicobacter pylori's proteins CagA and HspB induces cell proliferation in AGS gastric epithelial cells, independently from the bacterial infection. Cancer Res., 63, 6350-6356
- De Souza, D., Fabri, L.J., Nash, A., Hilton, D.J., Nicola, N.A. and Baca, M. (2002): SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry, 41, 9229-9236
- De Freitas, D., Urbano, M., Goulao, M.H., Donato, M.M., Baldaia, C., Martins, M.I., Souto, P., Gregorio, C., Figueiredo, P., Gouveia, H. and Romaozinho, J.M. (2004): The effect of Helicobacter pylori infection on apoptosis and cell proliferation in gastric epithelium. Hepatogastroenterology, 51, 876-82
- Farinati, F., Cardin, R., Russo, V.M., Busatto, G., Franco, M. and Rugge, M. (2003): Helicobacter pylori CagA status, mucosal oxidative damage and gastritis phenotype: A potential pathway to cancer? Helicobacter, 8, 227-234
- Fischer, W., Puis, J., Buhrdorf, R., Gebert, B., Odenbreit, S.and Haas, R. (2003): Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol., 42, 1337-1348
- Hatakeyama, M. (2003): Helicobacter pylori CagA--a potential bacterial oncoprotein that functionally mimics the mammalian Gab Family of adaptor proteins. Microbes and Infection, 5, 143-150
- Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., Higuchi, M., Takahashi, A., Kurashima, Y., Teishikata, Y., Tanaka, S., Azuma, T. and Hatakeyama, M. (2004): Helicobacter pylori CagA induces Ras- independent morphogenetic response through SHP-2 recruitment and activation. J. BioI. Chem., 279, 17205-17216 https://doi.org/10.1074/jbc.M309964200
- Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M. and Hatakeyama, M. (2002): SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295, 683-686
- Ito, Y., Azuma, T., Ito, S., Suto, H., Miyaji, H., Yamazaki, Y., Kato, T., Kohli, Y., Keida, Y. and Kuriyama, M. (2000): Sequence analysis and clinical significance of the iceA gene from Helicobacter pylori strains in Japan. J. Clin. Microbiol., 38, 483-488
- Karita, M., Matsumoto, S. and Kamei, T. (2003): The size of cagA based on repeat sequence has the responsibility of the location of Helicobacter pylori in the gastric mucus and the degree of gastric mucosal inflammation. MicrobioI. Immunol., 47, 619-630
- Kiltz, U., Pfaffenbach, B., Schmidt, W.E. and Adamek, R.J. (2002): the lack of influence of CagA positive Helicobacter pylori strains on gastro-esophageal reflux disease. Eur. J. Gastroenterol. Hepatol., 14, 974-984
- Ko, J.S. and Seo, J.K. (2002): cag pathogenicity island of Helicobacter pylori in Korean children. Helicobacter, 7, 232-236
- Maeda, S., Ogura, K., Yoshida, H., Kanai, F., Ikenoue, T., Kato, N., Shiratori, Y. and Omata, M. (1998): Major virulence factors, VacA and CagA, are commonly positive in Helicobacter pylori isolates in Japan. Gut., 42, 338-343
- Meyer-ter-Vehn, T., Covacci, A., Kist, M. and Pahl, H.L.(2000): Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J. BioI. Chem., 275, 16064-16072
- Miehlke, S., Kibler, K., Kim, J.G., Figura, N., Small, S.M., Graham, D.Y. and Go, M.F. (1996): Allelic variation in the cagA gene of Helicobacter pylori obtained from Korea compared to the United States. Am. J. Gastroenterol., 91, 1322-1325
- Naito, Y. and Yoshikawa, T. (2002): Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress. Free Radic. BioI. Med., 33, 323-336 https://doi.org/10.1016/S0891-5849(02)00868-7
- Naumann, M., Wessler, S., Bartsch, C., Wieland, B., Covacci, A, Haas, R. and Meyer, T.F. (1999): Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island. J. BioI. Chem., 274, 31655-31662 https://doi.org/10.1074/jbc.274.44.31655
- Nozawa, Y., Nishihara, K., Peek, R.M., Nakano, M., Uji, T., Ajioka, H., Matsuura, N. and Miyake, H. (2002): Identification of a signaling cascade for interleukin-8 production by Helicobacter pylori in human gastric epithelial cells. Biochem. Pharmacol., 64, 21-30
- Puis, J., Fischer, W. and Haas, R. (2002): Activation of Helicobacter pylori CagA by tyrosine phosphorylation is essential for dephosphorylation of host cell proteins in gastric epithelial cells. Mol. Microbiol., 43, 961-969
- Segal, E.D., Cha, J., Lo, J., Falkow, S. and Tompkins, L.S. (1999): Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. USA, 96, 14559-14564
- Seo, J.H., Lim, J.W., Kim, H. and Kim, K.H. (2004): Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases, AP-1, and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. Lab Invest., 84, 49-62
- Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W.J. and Covacci, A. (2002): c-Src/Lyn kinases activate Helicobaeter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol., 43, 971-980
- Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M. and Hatakeyama, M. (2003): Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J. BioI. Chem., 278, 3664-3670 https://doi.org/10.1074/jbc.M208155200
- Yamazaki, S., Yamakawa, A., Ito, Y., Ohtani, M., Higashi, H., Hatakeyama, M. and Azuma, T. (2003): The CagA protein of Helieobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa. J. Infect. Dis., 187, 334-337 https://doi.org/10.1086/367807