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Bayes Estimators in Group Testing

Sehyug KwonV

Abstract

Binomial group testing or composite sampling is often used to estimate the
proportion, p, of positive(infects, defectives) in a population when that proportion is

known to be small; the potential benefits of group testing over one-at-a-time testing
are well documented. The literature has focused on maximum likelihood estimation.
We provide two Bayes estimators and compare them with the MLE. The first of our
Bayes estimators uses an uninformative Uniform(0, 1) prior on p; the properties of

this estimator are poor. Our second Bayes estimator uses a much more informative
prior that recognizes and takes into account key aspects of the group testing context.
This estimator compares very favorably with the MSE, having substantially lower
mean squared errors in all of the wide range of cases we considered. The priors uses
a Beta distribution, Beta (a,3), and some advice is provided for choosing the

parameter « and ( for that distribution.
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1. Introduction

Binomial random variables are of interest in many applications: plants may or may not be
virus—infected, individuals may or may not be HIV seropositive, or a product may or may not
be defective (see, e.g., Sobel and Groll, 1959; Gibbs and Gower, 1960; Thompson, 1962;
Emmanual et al., 1988; Calhoon-Young et al., 1989; Litvak, Tu, and Pagano, 1994; Tu, Litvak,
and Pagano, 1994, 1995). The proportion p of positives (infecteds, defectives, etc.) in the
population or, equivalently the probability that an individual is positive, is often of specific
interest.

When p is small, group testing (or composite sampling) has been shown to be much more
efficient than one-at-a-time testing of samples in minimizing the mean squared error (MSE)

of p, the maximum likelihood estimator (MLE) of p (Gibbs and Gower, 1960; Thompson, 1962;
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Sobel and Elashoff, 1975; Swallow, 1985). With group testing, k individual samples are
combined, and a single test is done on the pooled sample. If the pooled sample tests negative,
then all of the k individual samples are taken to be negative; if the pooled sample tests
positive, then at least one of the individual samples is presumed to be positive, but we do not
know which one(s) or how many. If identification of the positive individual(s) is required, then
one must implement some scheme for retesting individuals in positive groups. However, Chen
and Swallow (1990) have shown that when one’s interest is confined to estimating the overall
p, retesting is of little, if any, value; accordingly, retesting schemes are not considered further
in this paper. In some applications, retesting is not feasible anyway.

In using group testing, it is critical that an appropriate group size is used. Unfortunately,
the optimal group size depends on the {unknown) proportion one is trying to estimate, as well
as on the number n of groups to be tested. Using a group size that is much larger than the

optimum size can lead to large bias and, thereby, inflated MSE of 1;, MLE. It has been
recommended that the appropriate group size would be for p=p,, where P, is a value believed
to be an upper bound for p. This strategy will lead to using a smaller-than~optimal group
size for the true p, but the user will realize most of the benefits of group testing (Swallow,

1985). Swallow (1985) and others give tables of optimal group size for various combinations of
the true proportion and the number of groups to be tested.

There may be additional constraints on how large the group size k can be in particular
contexts. For example, in HIV screening with enzyme-linked immunosorbent assay (ELISA)
tests, one may want to limit k to, say, 15 or fewer to allay concerns about false negatives
arising as a result of dilution effects (Tu et al., 1995).

Virtually all of the group-testing literature related to estimation have focused on the
maximum likelihood estimator (MLE) of p. Although Kumar and Sobel (1975) considered
Bayesian approaches to minimizing the expected number of tests required to classify every
individual as positive or negative using group testing, Bayesian estimation of p remains to be
explored.

In this paper, we consider Bayesian estimation of p under the squared error loss function,
and compare two Bayes estimators with the MLE by computing their MSE’s. We discuss the
underlying model and the MLE in Section 2, and develop our Bayes estimators in Section 3.
In Section 4, we compare the MLE and Bayes estimators over a range of conditions, i.e., for a
number combinations of n, the number of test groups, p and k through Monte Carlo

simulation. And in Section 5, we provide a discussion and conclusion.
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2. The Assumed Model and the MLE for p

The binomial group testing model makes the following assumptions:
(DA fraction p of the population is positive for the trait of interest, and the positives are

randomly distributed throughout the population. Individual samples can be viewed as
independent, identically distributed (i2d) Bernoulli random variables; when groups are

formed, a binomial model applies. In applications where positives are encountered in
clusters, for example, this assumption would be violated.
(ii)The number n of groups to be tested is fixed in advance. The optimal choice of group

size k depends in part on n.
(iii)The same group size k is used for each of the n groups. Group size is usually easily

controlled in practice. Walter, Hildreth, and Beaty (1980) and Le (1981) investigated
group testing with unequal group size, and, of course, the problem is then far messier.
(iv)Classification of group as positive or negative is without error. In group testing
applications, the possibility of false negatives as a result of dilution effects must always
be considered. For more on dilution effects and misclassification errors, see, e.g., Hwang
(1984), Chen and Swallow (1990, 1995), and Hung and Swallow (1999).
(v)Members of positive groups will not be retested.

Let D= Zdi be the number of positive (infected or defective) groups in the observed
1=

data, where d; is the test result for the ¢th group with d;=1 (infected) or 0 (non-infected) for
i=1,2,...,n. Then D is distributed Binomial (n,1— (1 —p)*). The MLE for p is
p=1-(1—- D)~ (1)
By Jensen's inequality, E(];) > p. So, for k> 1 the MLE is not an unbiased estimator,
but instead overestimates p. Thompson (1962) noted that the bias will be small as long as p

and k are small, and group testing is most advantageous when p is small.

3. Bayes Estimators

Suppose an observation vector d = (d;, d,, ...,d,) is a random sample from f(zlp) for
p € ©. In group testing, p is a single unknown parameter and the parameter space @ is
(0,1). We can specify a prior distribution 7w{p) for p to get a Bayes estimator. The posterior
distribution of p is then

7 (pld ) o (p)l(pld )

where I (p | d ) is the likelihood function. Under the squared error loss function, the posterior
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mean F(p|di,d,,...,d,) is the Bayes estimator (Casella and Berger, 1990). Moreover,
E(g(p)ld, ds, ..., d,) is the Bayes estimator for g(p), a function of p (Bickel and Doksum,
1977). In group testing, we can put the prior on p before choosing the group size k or on
po=1-—(1— p)’c after choosing it. For a particular experiment, prior information (a
reasonable upper bound) on p is useful in choosing the group size anyway. Therefore, to put
the prior on p rather than on Py may seem more natural. With the prior distribution on p,

the distribution of Py can be obtained by variable transformation.

3.1 Bayes Estimator 1

The uniform distribution on the parameter space [O, 1] can be considered as an
non-informative prior distribution 7 (p) for p since the infection rate must be in [0, 1]. Then,

the prior distribution of py is
7(py) = %(1;‘170)1/’6—1 for 0 <p, =<1
Therefore, the joint distribution of (d}, dy, ..., d,;p) is

£(dyy day oy dip) = (L= o)) °(1 = py)" 7

and the joint distribution of (d,, d,, ..., d,,) is

f(dy dy, ..., d,) = & Beta(D+1,n++ — D)

where Beta (a;b) =—%€%l with B(;.) and I'(.) denoting beta and gamma functions,

respectively. Then, the posterior distribution 7 (p, | dy, ds, ..., d,,) is

P (1 —py )+ 2
B(D+1in+1/k—-D)"

For the squared error loss function criteria, the Bayes estimator for p is then

1— I'2k+n—-D)I1/k+n+1)
rek+n+1)r(1/k+n—D)"

(2)
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3.2 Bayes Estimator 2

Because group testing is most useful when p is small and should be considered only in
such cases, the distribution of p seen in group testing applications is strongly skewed to the
right, with p almost certainly < 0.3 and usually < 0.05. This suggests using a prior
distribution that reflects this skewness. There is a one-to—one relationship between p and Py,
with the distribution of Py also being skewed to the right. For mathematical simplicity and
the conjugate property, we consider using a Beta distribution with parameters (o, 3), Beta
(o, ), as a prior; beta distributions are also appealing in that they can be made to assume a
great variety of shapes by the choice of the two parameters, o and (. Although the beta
prior can be placed on either p or Dy, it is mathematically easier in this case to put the prior
on Py.

When 7(p,) is Beta(a,3) distribution, the posterior distribution function
7T(Po | d, dz, dn) is

P30 (1= py )P0
B(a+ D;8+n—D)
For the squared error loss function criterion, the Bayes estimator for p is then

1— Na+pB+n)(B+1/k+n—D) 3)
r'B+n—D)I{a+B+1/k+n)"

How does one choose (a,3) for the prior distribution, m(p,)? When o = and both are

greater than 1, the pdf of Beta(a,3) is symmetric. The pdf becomes more skewed to the
right as « increases and is more skewed to the left as 3 increases. Since Py is a function of
p and k, the shape of the distribution function of Py depends on the distribution of p and k.
The skewness of the prior distribution of p to reflect the practical parameter space of [0, 0.3]
makes the distribution of Py also skewed. As k becomes larger, the skewness_ of Py goes
from right-skewed to left-skewed. Thus, we may choose (¢,) as follows: 3> a >1 for
small £ and > B> 1 for large k. The distribution of Py depends primarily on the
distribution of the true p, and the group size k is chosen with the value of (n,p) in mind.

Therefore, (n,p) should be simultaneously considered in selecting reasonable (a, ).

4. Comparison of the MLE and Two Bayes Estimators

For comparing the MLE and our two Bayes estimators, we proceed as follows:
(iYWe consider all combination of n = 10,20, and 30 with p=0.01, 0.02, 0.05, 0.1, 0.2. For

each combination (n,p), the group size k is chosen by Swallow’s(1985) Tablel.



624 Sehyug Kwon

(ii)Generate (n X k) individuals that are iid distributed Bernoulli(p) and form n test

groups.
(iii)Calculate the MLE and Bayes estimators by formulaece, (1), (2), and (3). The Bayes
estimators of formula (2) and (3) are called Bayes 1 and Bayes 2, respectively.

(iv)Repeat steps (i) and (iii) 5,000 times for each (n,p) and by the bootstrap get E(p ),
Bias(p ) and MSE(p).

In the simulations, we use the Beta(2,3) distribution as the prior distribution 7r(p0) in
computing Bayes 2. This prior is slightly skewed to the right; the distribution of Py is then
more severely skewed to the right. We exclude the case D= n in computing, because, in that
case, the MLE of p is equal to 1. The simulation results are summarized in Table 1.

Because all three of these estimators are biased, they are compared through their mean
squared errors (MSE's). In terms of MSE, the Bayes 2 estimator is by far the best in all
cases and the Bayes 1 is worst in all cases. Because the Umiform(0,1) prior for Bayes 1

fails to reflect the fact that p will be small in group testing, it is to be expected that Bayes 1
will do poorly. In terms of the bias, E(]; —p), Bayes 1 is also consistently the worst. The

MLE always overestimates p, reflecting its known positive bias. More often than not, the bias

in the MLE is smaller than in the Bayes 2 estimator, but their biases don’t differ greatly.
This is specially true for small values of p, which are those that are likely to prevail in

applications. When p is small, lower bounds for the MLE can be negative where is out of
parameter space. It makes the MLE better than Bayes 2 in some small p. Moreover, Bayes 2
depends on the prior selected for 7(p,). Bayes 2 as shown in Table 1 took 7(p,) ~ B(2,3).

Other choices of a and 8 could improve the performance of Bayes 2 in particular cases, ie.,
under particular values of (n,p,k), and an experimenter typically has some advance
information on (n,p, k)- Usually the experimenter has a ballpark guess or a prior upper bound
for p in mind; n may well be known approximate or, in some cases, set by the experimenter;
an appropriate choice of k depends on n and p, as illustrated in Swallow’s Table 1 (1985).
Figures 1-3 illustrate how changes in a and 3 affect Bayes 2. Each figure shows all three
estimators, MLE Bayes 1 and Bayes 2, which we computed by formulae (1), (2) and (3) for
D=0,1,...,(n—1). These are exact, not simulated results. Values of k from Swallow’s
(1985) Table 1 were used. The values of d are on the horizontal axis, and ;B on the vertical
axis. The horizontal line in each plot is at the true value of p. In each of Figures 1 and 2,
two sub-figures show the effect of increasing the value of 8 in Beta(a,() from =2 to
B=5. The MLE and Bayes 1 depend on (n,p, k) but do not depend on « and 3, which
addresses the skewness of the prior distribution of p. In both Figure 1 and 2, increasing the
value of 3 from 2 to 5 is shown to reduce the bias in Bayes 2, substantially reducing it for

larger values of d(shown on the horizontal axis). In figure 3, the sub-figures illustrate the
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effect of increasing the value of o in Beta (o, ) from 2 to 3 in a particular case. Again, the
bias of Bayes 2 is reduced, although only slightly. Section 5 provides some discussion on
selecting values of a and 8 that may be more helpful to the practitioner.

Table 1: Simulation Results

MLE Bayesl Bayes2
n p |E() MSEQp) E(p) MSE (p) | Ep) MSE (p)
0.01 | 0.0106 0.00004 0.0140 0.00006 0.0122 0.00002
0.02 | 0.0214 0.00015 0.0277 0.00022 0.0237 0.00008
10 0.05 | 0.0527 0.00269 0.0654 0.01539 0.0548 0.00059
0.10 | 0.1064 0.00273 0.1264 0.00347 0.1054 0.00121
0.20 | 0.2045 0.00796 0.2290 0.00821 0.1906 0.00323
0.01 § 0.0104 0.00002 0.0118 0.00002 0.0106 0.00001
0.02 | 0.0210 0.00005 0.0232 0.00006 0.0200 0.00003
20 0.05 | 0.0523 0.00026 0.0570 0.00033 0.0485 0.00015
0.10 | 0.1031 0.00092 0.1112 0.00110 0.0955 0.00053
0.20 | 0.2059 0.00326 0.2174 0.00353 0.1891 0.00192
0.01 | 0.0105 0.000010 0.0114 0.000012 0.0106 0.000008
0.02 | 0.0204 0.000023 0.0216 0.000027 0.0192 0.000016
30 0.05 | 0.0517 0.000161 0.0546 0.000194 0.0478 0.000103
0.10 | 0.1029 0.000557 0.1080 0.000658 0.0949 0.000361
0.20 | 0.2062 0.001925 0.2137 0.002126 0.1892 0.001274

MLE: Maximum likelihood estimator
Bayes 1: Bayes estimator with 7(p) Uniform|0,1]
Bayes 2: Bayes estimator with w(p,) Beta (2,3)




626 Sehyug Kwon

0.3
--m-mle )
---a---bayes|
i —X—DbayesZa R
0.2 4
—O0—bayes2b Y

Figure 1. (n,p, k) = (10,0.05,9), Bayes2a(, -3 5-3). Bayes2bi, 3 5-3)

0.2 I
--&-mle S
0.15 | | ~~4 - bayes] NS
—X—bayes2a F/
—O0—bayes?b “,/ (
. u
0.1} & %;"
A B
'y %25
'_. ’/ 5/6
D
0.05 -Q"/-ﬁy =
Q/Q‘é"‘d”
/Qfgfg——/
QR =R . -
O -,.'_—_-,“ L 1 t i 1 ! L X ! I 1 1 L ! 1 L 1
0 5 10 i5

Figure 2. (n,p, k) = (20,0.05,16), Bayes2a,—s g3) Bayes2bi,_3 s—34)



Bayes Estimators in Group Testing 627

0.2
- -nle :
0.15 ---A--- bayest 1Y
—x~—bayes?a N
—O—bayes2b I/-

0.1} B %/ﬁ

Yi»%
A S
e Feine
0.05 F WE o
ot
WQ;Q—Q
R
0 QEQ—ég—EgnT—I _T ~|- 1 1 ] It i 1 L | 1 L Il | i 1 ) e 1 I L | 1.
1 6 11 16 21 26

Figure 3. (n,p, k) = (30,0.05,20), Bayes2a(, -2 s-3) Bayes2by_qp-4)

5. Discussion and Conclusion

In the binomial group testing (or composite sampling) literature, the focus has been strongly
on maximum likelihood approaches to the estimation of p, the proportion of infected or

defective individuals in the population. We proposed here two Bayes estimators for p. The
prior distribution can be placed on either p or py=1—(1—p)*, where k is the number of
individuals to be pooled in each group. Then, Py is the proportion of defective groups, ie.,
groups containing 1 or more defective or infected individuals. Whether the prior is placed on p
or Py is simply a matter of convenience, as there is a one-to-one relationship between p and
Po. Our Bayes 1 estimator places an uninformative Uniform (0,1) prior on p. This estimator
is shown to perform poorly. The Bayes 2 estimator places the prior on Dy, and makes better
use of our knowledge of the group testing context. In group testing, the value of p will
almost surely be less than 0.1 and probably less than 0.05. The prior distribution for p and
thus for Py should be skewed to reflect this. To accomplish this, we use a beta distribution,

Beta (a, ), for which the prior mean and variance of Py are

__ o 7 — af
E(Fy) = a+f and V(Fy) = (a+B)(a+B+1)’
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respectively. Because Py is the proportion of positive (infected, defective) group,

E(po) =—2 _ and (o+ B)suggests thinking of a as being related to the proportion of

a+pf
"positives,” and thus @ as being related to the proportion of “negative”. For example, suppose
the population proportion of positive individuals p is 0.1 and one planned to test n=10 groups.
Swallow’s Table 1 (1985) suggests using the optimal group size, k=5 for (n,p) = (10,0.1).
Then, p,=1- (1 —p)’C equals approximately p,=0.4. With n=10, we might set

a=np,=4 and f=6. For (a,8)=(4,6) in Bayes 2 FE(p)=0.1028 and
MSE(p) = 0.00063, respectively. Both the bias and MSE with (a,8) = (4,6) are smaller

than found with (o, 8) = (2,3) in Table 1 where E(p)=0.1054 and MSE(p)= 0.00121 for
this same case. Further discussion of the assessment of a beta prior distribution can be found
by Chaloner and Duncan (1983).

The overall conclusions are that Bayes estimators can compare very favorably with the
MSE, provided an informative prior is used. Table 1 compared these biased estimators through
their MSE’s and showed that our Bayes estimator 2 had the smaller MSE over a wide range
of situations using a Beta (a = 2,8=3) prior for py throughout. We further showed that the

Bayes 2 can be improved by selecting (o, ) in Beta(a,3) more carefully in a particular

case.
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