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ASYMPTOTIC DISTRIBUTION OF DEA EFFICIENCY
SCORES!

S.-0O. Jeong!

ABSTRACT

Data envelopment analysis (DEA) estimators have been widely used in
productivity analysis. The asymptotic distribution of DEA estimator de-
rived by Kneip et al. (2003) is too complicated and abstract for analysts to
use in practice, though it should be appreciated in its own right. This paper
provides another way to express the limit distribution of the DEA estimator
in a tractable way.
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1. INTRODUCTION

Suppose (x,y) represents a pair of input and output exhibited by a produc-
tion unit during a period. In productivity analysis one is interested in measuring
the efficiency of the production unit. The relative efficiency of this production
unit can be measured by the (radial) distance from (x,y) to the frontier of the
production set. But, since the production set is generally unknown, we have
to estimate it using the observed pairs of input and output. A natural idea to
estimate the production set is to envelop or wrap the observed data points. In
fact, when the production set is convex and free disposable, the data envelop-
ment analysis (DEA) provides an optimal estimator in the minimax sense, see
Korostelev et al. (1995). By measuring the distance from (x,y) to the frontier of
DEA estimate of the production set along a given direction of interest, we may
obtain the DEA estimate of the efficiency score at (x,y).
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Statistical properties of the DEA efficiency score are now available in the
literature. Kneip et al. (1998) obtained the consistency and the convergence
rate of DEA estimator of efficiency score in a very general setup. Gijbels et al.
(1999) derived the explicit formula for the asymptotic distribution of the DEA
estimator when the inputs and the outputs are scalar. Jeong and Park (2004)
extended this result to a general case with multiple inputs and scalar outputs.
Kneip et al. (2003) derived the asymptotic distribution of DEA estimator in the
case that both inputs and outputs are multidimensional. But the asymptotic
representation in Kneip et al. (2003) is not manageable due to its abstract and
complex expression. The aim of this paper is to provide a tractable way to express
the asymptotic distribution of DEA estimator.

2. DEA ESTIMATOR

Let ¥ be the production set, i.e. the set of feasible pairs of input x and
output y exhibited by production units during a period:

¥ = {(x,y) € B x R} |x can produce y}.

It is helpful in multidimensional situation to describe the production set by its
sections. The input set for a given output level y, X(y), is defined by the set of
all possible inputs producing the output y:

X(y) = {x|(x,y) € ¥}.

On the other hand, the output set for a given input level x is defined by the set
of all possible outputs from the input x:

Y(x) = {yl(xy) e ¥}

The production set ¥ is generally assumed to be closed and convex, so that X (y)
is closed and convex for all y € R} and Y (x) is closed, convex and bounded for
all x € R.. Hence, given a pair of input and output (x,y), the following radial
efficiency measures are well-defined:

O(x,y) =inf{6 > 0|6x € X(y)} =inf{6 > 0| (6x,y) € ¥},
Alx,y) =sup{A > 1|y € Y(x)} =sup{X > 1| (x,Ay) € ¥}.

Note that, for (x,y) € ¥, 0 < 8(x,y) <1 and A(x,y) > 1. If 6(x,y) = 1 holds,
then the (x,y) is considered as efficient in terms of input. Similarly A\(x,y) =1
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holds, the point is efficient in terms of output. From now on, we consider only
input efficiency measure 6(x,y) to save space. All the consequent results are
valid for the output efficiency measure A(x,y) but a few changes in notations.

In practice ¥ and 6(x,y) are not observable, and hence we have to estimate
them from a sample of observations. Let X, = {(X;,Y;), i1 = 1,...,n} be an
observed sample.

AssUMPTION 1. V¥ is convex and free disposable, i.e.

(a) If (x1,y;) € ¥ and (x2,y5) € VU, then
(ax1 + (1 — a)x2, ay; + (1 —a)y,) € ¥ for all « € [0,1],
(b) If (x,y) € ¥, then (X,y) e U forx >x and ¥ <.

Under Assumption 1, a natural estimator for ¥ is the smallest convex and
free disposable set contaning the observed sample X,,, which is called the data
envelopment analysis (DEA) estimator in the literature. Precisely, the DEA
estimator (I\IDEA for ¥ is defined by

Tpga = {(x,y) e Rl xR

n n
x> &Xi, y <D &Y, for some (&1, ..., &)
i=1

i=1

n
such that Zfi =1, &20,i= 1,...,n}.
i=1
And the DEA (input) efficiency score is given by

n n
ox > Z{iX,-, y < Z{iYi for some (&1,...,&n)
i=1 i=1

n
such that » & =1, >0, i= 1n}

=1

fpEa(x,y) = min{& >0

3. MAIN RESULTS

3.1. Limat distribution

To derive the limit distribution of the DEA efficiency scores, we need the
following assumptions:
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ASSUMPTION 2.

(a) (Xi,Y;)’s are iid with a density f having its support D C ¥, and f(x,y) =
0 for (x,y) ¢ D.

(b) The density f is continuous on D and f(f(x,y)-x,y) > 0 for all (x,y) € D.

ASSUMPTION 3.

(a) For (x,y) in the interior of D, 6(,-) is twice continuously differentiable in
a small neighborhood of (x,y).

(b) The Hessian matrix of 6(-,) at (x,y) is positive definite.

We are going to translate the problem of estimating the efficiency scores with
multiple inputs and multiple outputs into that of estimating a scalar boundary
function with multiple covariates. Fix a point (xo,yo) € RE™? of interest, and
let {vj]j=1,...,p— 1} be an orthonormal basis for z3 = {t € RP |t'x¢ = 0}.
Consider a transformation ry, from Rf to RP:

VX(Xo

Then, r«, is the translation of t in the new coordinate system with the axes
Vi,...,Vp_1 and xg, and it holds that r«,(x0) = (0,...,0, /x{xo)". Moreover,
in the case of p = 1, we have r;,(t) =t for all t € Ry. For each (X;,Y;) € X,
apply a transform hy, y, which maps (X;,Y;) to (Z;, W;):

' ’ / tlxo
Txo :t > | UV, t'vo, ..tV , ———].

Zi = (Txo (Xi)(l)a sy Txg (Xi)(p_l)vyi(l) - ygl), Ces ,Yi(q) - yE)Q)
W; = Txo (Xl)(p)

)I’ (3.1)

for i = 1,...,n. Hereafter al?) denotes the ' component of the vector a. In the
new coordinate system (z,w), the production set ¥ is reexpressed as

G = {(z,u) E R xRy | (2,0) = hxo,yo(%,¥), (x,¥) € ¥},

And we can define the boundary function g of G' in the new coordinate system
(z,w) as follows:

9(z) = g(z|xg,yo) = inf{w > 0| (z,w) € G}. (3.2)
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Then, in the new coordinate system, (Z;, W;)’s are laid on the region
G={(z,w) e RRTI xRy |w>g(z)}.
Since the definition of ¢ implies that
9(0)

9(X0,y0) = \/}ma

the function ¢ in (3.2) is convex and twice continuously differentiable in a small
neighborhood of z = 0. Now define the convex hull estimator of g at z € RP~1+9
as

(3.3)

Z&Z =z for some ({1,...,&n)

i=1

such that Z@- =1,4£2>0,:1= 1,...,n}.

=1

gconv Z = min {Zéz

LEMMA 3.1. Under Assumptions 1-8, it holds that with probability tending
to 1

fpEa(X0,¥0) =

PROOF. To obtain eony(0), we have to solve the linear programming problem
given by minimizing

n n

ZE,-W,- subject to Zgizi =0,
i=1 i=1
n

251_1 £>0 i=1,.

i=1

For (&1,...,&,) such that >0 (& =1and & >0 for i =1,...,n, we have

n

Z&Zi =0

i=1

. xp Xy
And ;51 {Xz \/}m \/m } ;61. - (3-4)

Since Wi = 7o (X;)®) = (xhxp) "V/?x,X;, (3.4) is equivalent to

Z§ixi =Xg - Z’ 1& Z&

=1
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Hence the above linear programming problem is equivalent to the problem to get
a convex hull estimator given by

n n
0% = Zgixi, Yo = Z&Yi for some (&1,...,&,)

=1 =1

such that Y & =1, >0, i = ln}

i=1

éconv(xm)’o) = min {0 >0

By the Assumptions 1(b) and 2(b), we have

Opra (X0, ¥0) = Oconv (%0, ¥0)

with probability tending to 1, which completes the proof of the lemma. 0

The following lemma is the direct consequence of the above lemma and (3.3):

LEMMA 3.2. Under Assumptions 1-83, the limit distribution of
n?/ P+t {fppa (%0, ¥0) — (%0, ¥0)}
s the same as that of
n/®TD (x439) 71 {geonv (0) — 9(0)}.

Now the problem is reduced to that of deriving the limit distribution of the
convex hull estimator for a convex function g with the covariates on RP~19. This
is a good news, because the limit distribution of convex hull estimators is already
available in Jeong and Park (2004). Omitting the detailed proofs which are very
similar to those in Jeong and Park (2004), we describe the way to obtain the limit
distribution of n?/(P+te+1) (g . (0) — g(0)} in the followings. Consider a linear
transformation taking (z;, w;) to

7, = /o) gy |2,

5 = n ) s, g0 — g,
where || - || is the determinant of a matrix,
1
g0 = 9(0), g1 = Vg(0) and g = 5 V?9(0).

In the new coordinate system (z,w), the transformed data points now have
as their frontier the surface with the equation

@ =27+ o(1)



AsyMTOTIC DISTRIBUTION OF DEA EFFICIENCY SCORES 455

uniformly on any compact set of Z. The density f of the transformed sample
points is approximated by n~!||gs||~'/2fy uniformly in the region

{('i, B) | V77 < eqnt/ T 75 < & < eqn? <P+0+1>}

for any sequence ¢, — 0. Note that the existence of the density f and its
continuity are justified by the continuity of the transformation in (3.1). Define
& = (|lg2ll/ f8)/P+a+1). Consider a new sample from the uniform distribution on

K K pta-l
5 e [_( . )n1/<p+q+1>, ( \/; )nl/(p+q+1)]

and 7% < U < 7% + kn?/(PratD) }

the region

B, = {rzzﬂ)

on which the uniform density equals n=1x~(Pte+1)/2 — n“1||g2|[‘1/2f0. Let Geonv
be the version of Geopy obtained by the new sample.

LEMMA 3.3. Under Assumptions 1-3, Geonv(0) and nQ/(”+Q+1){§conv(0) —
g(0)} have the same limit distribution.

By Lemmas 3.1-3.3, we finally have the following theorem.
THEOREM 3.1. Under Assumptions 1-3,

n P4+ {hnpa (%0, Vo) — 0(%0,¥0)}

and
(X6XQ ) —1/2§conv (O)

have the same limit distribution.

Note that, once x has been determined, the distribution of geony(0) can be
simulated by Monte Carlo method. Based on the simulated distribution we may
define a bias-corrected estimator and a confidence interval for 8(xg,y;). In the
next subsection we discuss these in detail together with the estimation of the
unknown x.
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3.2. Estimation of parameters

Recall & = (||g2ll/f§)Y/P+9+1), Hence we are to estimate gy and fy for
using transformed data (Z;, W;)’s given by (3.1). For this, we naturally use the
analogues of the estimators in Jeong and Park (2004). Consider the hypercube

§ o)rHHe
c(0,6) = [—5, 5]

in RP~1%2 for some 6§ > 0. Let
D(O, 5) = {(z,w) |Z € C(07 6)7 gconv(z) <w< gconv(o) + 6}

Define the estimator of fy by

7= Sor I[(zi,ws) € D(0,6)]
’ nu(D(0,3)

where p(-) is the Lebesgue measure in RPT9. Now we discuss the estimation of
g2. Take h > 0 and define

Xp(0,h) = {(zi;gconv(zi)) I z; € C(0,h)} U {(0, geonv ( ))}

Fit the second order polynomial regression surface with the points in A;(0, h) by

the least square method to get
9(z, h) = Jo + &12 + 2'E2z.
Then the matrix g is used for the estimator of go.

Using ® = (||&2l/fo )1/(’”"1““) to simulate the distribution of Geony(0), we
may construct the bias-corrected estimator and the confidence intervals in the
same way as in Jeong and Park (2004). Let {gg,, 4(0) B | be the set of B values
of Geonv(0), each of which is computed from a random sample from the uniform

distribution on B;. Then the bias-corrected estimator of éDEA(XO, ¥o) is defined
by

OpEa (X0, o) — n~H P+ (xfxg) =12 chonv 5(0).
b=1
Let o be the o** quantile of the empirical distribution of {g:onv’b(O)}le. Then,
100(1 — @)% confidence interval for 8(xg,y,) is given by

[9DEA(X0, ¥o) — n” YT (x4x0) "2, 0,

fpEa (X0, o) — n~ P (x(x,) 7124, /2]

In the next section we investigated the finite sample properties of the bias-
corrected estimator and the confidence interval by a simulation study.
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TABLE 4.1 Summary of the simulation results

Mean squared error Coverage probability
(6,h) DEA bias-corrected 90% 95%
(5.0, 5.0) 4.848 x 1073 2.702 x 1071 90.9% 94.1%

4. NUMERICAL STUDY

To validate our large sample approximation in practice, we evaluated the
finite sample performances of the bias-corrected estimator and the confidence
interval defined in the previous section by a simulation study with the same data
generating process (DGP) as in Kneip et al. (2003):

e z;. ~ Uniform[10, 20], 22, ~ Uniform(10, 20].

. ) 1w 8«
o Yy = m?é“ng CoOSw, Yg = z‘{-;mggl sinw, w ~ Umform[gi, 55]

o 71 = 210602 3y = 35.e02El £ ~ N(0,1).

Under this DGP, 1000 Monte Carlo experiments were done with the sam-
ple size n = 100. On each experiment we took xo = (20.69,20.69) and y, =
(5.59,5.59) for the point where the efficiency is measured. The true efficiency
score at this point is 0.6. We estimated the mean squared error of the DEA esti-
mator and that of the bias-corrected estimator. And the coverage probabilities of
the confidence intervals at the nominal levels 90% and 95% were also computed.
The results are summarized in Table 4.1, which proclaims that the proposed large
sample approximation really works even with a small sample size of n = 100 in
the p + ¢ = 4 dimensional space. Figure 4.1 depicts the simulated distribution of
DEA estimator (thin solid) and its bias-corrected version (thick dashed), which
clearly shows that the bias-correction based on the proposed approach is valid.
At other points of (xg,y,) we observed the similar results, which are omitted for
the sake of space. We point out that the accurate estimation of x is crucial for the
proposed approach and that it is sensitive to the choice of smoothing parameters
d and h. We do not go further on this issue, which is left for a future work.
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FIGURE 4.1 The simulated distribution of DEA estimator (thin solid) and its bias-corrected
version (thick dashed). The true efficiency score is equal to 0.6.
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