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CONFLICT AMONG THE SHRINKAGE ESTIMATORS
INDUCED BY W, LR AND LM TESTS UNDER
A STUDENT’S ¢t REGRESSION MODEL

B. M. GoLaM KiBrial

ABSTRACT

The shrinkage preliminary test ridge regression estimators (SPTRRE)
based on Wald (W), Likelihood Ratio (LR) and Lagrangian Multiplier (LM)
tests for estimating the regression parameters of the multiple linear regres-
sion model with multivariate Student’s ¢ error distribution are considered
in this paper. The quadratic biases and risks of the proposed estimators
are compared under both null and alternative hypotheses. It is observed
that there is conflict among the three estimators with respect to their risks
because of certain inequalities that exist among the test statistics. In the
neighborhood of the restriction, the SPTRRE based on LM test has the
smallest risk followed by the estimators based on LR and W tests. However,
the SPTRRE based on W test performs the best followed by the LR and
LM based estimators when the parameters move away from the subspace of
the restrictions. Some tables for the maximum and minimum guaranteed
efficiency of the proposed estimators have been given, which allow us to
determine the optimum level of significance corresponding to the optimum
estimator among proposed estimators. It is evident that in the choice of the
smallest significance level to yield the best estimator the SPTRRE based on
Wald test dominates the other two estimators.
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1. INTRODUCTION

Consider the linear regression model, y = X8 + e, where y = (y1,%2,-.-,%n)’
is an n X 1 vector of observations on the dependent variable, X is an n x p
matrix of full rank p, 8 = (B1,02,...,Bp) is an p x 1 vector of parameters and
e = (e1,e2,...,e,) is an n x 1 vector of errors, which is distributed according to
the laws belonging to the class of spherical compound normal distributions with
E(e) = 0 and E(ee’) = 021, where I, is the n-dimensional identity matrix and
o2 the common variance of ¢; (i = 1,2,...,n). This class is a subclass of the
family of spherically symmetric distributions (SSDs) which can be expressed as
a variance mixture of normal distributions, that is,

fe) = /0 ” Fel0)g(6)ds, (L1)

where f(e) is the probability density function (pdf) of e, f(e|d) is the pdf of
normal with mean vector 0 and variance-covariance matrix #2I, and g¢(6) is
the pdf of § with support [0,00). In this case, E(6?) = o? and we write
e ~ SSD({(0, E(#*)1,,)}). Using (1.1), the multivariate Student’s ¢ distribu-
tion with mean vector, E(e) = O and variance-covariance matrix, F(ee') =
v(v —2)~1o?1, = 62I,, v > 2 can be obtained if g(d) be assumed to have an
inverted gamma (IG) density with a scale parameter 02 and degrees of freedom
v.

In most applied as well as theoretical research work, the error terms in linear
models are assumed to be normally and independently distributed. However,
such assumptions may not be appropriate in many practical situation (for exam-
ple, see Gnanadesikan, 1977; Zellner, 1976). It happens particularly if the error
distributions have heavier tails. One can tackle such situation by using the well
known ¢t distribution as it has heavier tail than the normal distribution, specially
for smaller degrees of freedom (e.g. Blattberg and Gonedes, 1974). For details
readers are referred to Kelker (1970).

Our primary interest is to estimate the regression coefficients 8 when it is a
priori suspected but not certain that 8 may be restricted to the subspace

Hy:HB = h, (1.2)

where H is an ¢ X p known matrix of full rank ¢ (< p) and h is an g x 1 vector
of known constants. The unrestricted least squares estimator (URLSE) of 8 is
given by

B =C Xy, - (1.3)
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where C = X'X is the information matrix. The corresponding unbiased estimator
of 02 is 62 = (y — XB)'(y — XB)/m, m=n —p.
Similarly, the restricted least squares estimator (RLSE) of 8 is given by

B=pB-C 'H(HC'H) (HB — h) (1.4)

and the corresponding estimator of o2 is 62 = (y — XB) (y—XB)/(m + q), which
is unbiased under the null hypothesis. Note that the restricted least squares
estimator satisfies the condition HB = h.

Now we consider another estimator, called shrinkage restricted least squares
estimator (SRLSE) of 8 as

BSE =dp +(1-d)B, (1.5)

where d is the coefficient of distrust and 0 < d < 1. The value of d may com-
pletely be determined by the practitioner on the basis of his/her belief about the
null hypothesis. For example, if the practitioner wishes to rely entirely on data
and believes that the parameter space belongs to the restricted subspace, then
he/she should use d = 0. The SRLSE is a modification of RLSE of 8. It yields
smaller risk at and near the null hypothesis but performs poorly in the rest of
the parameter space. However, SRLSE provides a wider range than the RLSE in
which it dominates URLSE. This motivates us to replace the RLSE by SRLSE in
the formulation of shrinkage preliminary test least squares estimator (SPTLSE)
of B as

BSFT = BSEI(L, < Lng) + BI(Ln > Lna), (1.6)

where L, is the general test-statistic for testing the null hypothesis in (1.2), £, o
is the upper a-level critical value of £, and I(A) is the indicator function of
the set A. Under the null hypothesis and normal theory, £, follows a central F-
distribution with (g, m) degrees of freedom, while under the alternative hypothesis
it follows the non-central F-distribution with (g, m) degrees of freedom and non-
centrality parameter A/2, where

(HB - h)(HC'H')~!(H - h)
A

A=

(1.7)

is the departure parameter from the null hypothesis. For d = 0, we obtain the
preliminary test least squares estimator (PTLSE) of 8 as

BPT = ﬂI(ﬁn < ['n,a) +BI(£n > ['n,a)-
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The use of PTLSE is limited by the size of the PT as compared to the
SPTLSE. It is interesting to note that the SPTLSE has a significant edge over the
PTLSE with respect to the size of PT. The SPTLSE is a compromised estimator
of B when it is suspected that HB = h holds and is a convex combination of 3
and BSR. If Hy is true then 3SP7T = [?SR; otherwise BSPT = 3. Also for d = 0,
SPTLSE reduces to PTLSE. The preliminary test approach estimation has been
pioneered by Bancroft (1944), followed by Bancroft (1964), Han and Bancroft
(1968), Sen and Saleh (1987), Judge and Bock (1978), Saleh and Han (1990),
Giles (1991), Kibria and Saleh (1993), Ahmed (2002) and recently Kibria and
Saleh (2003a) among others.

It is observed from (1.3) that the usual least squares estimator (LSE) of 8
depends heavily on the characteristics of the information matrix C = X'X. If
the C matrix is ill-conditioned, the least squares estimator (LSE) produces un-
duly large sampling variances. Moreover, some of the regression coefficients may
be statistically insignificant with wrong sign and meaningful statistical inference
become difficult for the researcher. Hoerl and Kennard (1970) found that multi-
collinearity is a common problem in many fields of applications. To resolve this
problem, they suggested to use C(k) = X'X + kI,, k > 0 rather than C in the
estimation of 8. The resulting estimator of 8 is known as the unrestricted ridge
regression estimator (URRE) of B and defined as

B(k) = R(k)B, (1.8)

where R(k) = (I, + kC“l)_1 is the ridge or biasing parameter and k& > 0 is the
shrinkage parameter.

Based on the RLSE, Sarkar (1992) proposed the following restricted ridge
regression estimator (RRRE) of 3,

BRE (k) = R(k)B. (1.9)
Finally, based on the SPTLSE, we define the following shrinkage preliminary
test ridge regression estimator (SPTRRE) of 3 as

BT (k) = BSR(K)I(Ln < Lno) + BR)I(Ln > Ly n) = R(K)BSFT, (1.10)

where ,BSR(k) = R(k)ﬁSR is the shrinkage restricted ridge regression estimator
(SRRRE) of B8 which is considered by Haq and Kibria (1996).

The ridge regression approach has been studied by Hoerl and Kennard (1970),
Gibbons (1981), Sarkar (1992), Saleh and Kibria (1993), Aldrin (1997), Kibria



CONFLICT AMONG ESTIMATORS 415

and Ahmed (1997), Foucart (1999), Gunst (2000) and very recently Kibria and
Saleh (2003b) to mention a few.

The main objective of this paper is to study the finite sample properties of the
SPTRRE based on the Wald, the likelihood ratio and the Lagrangian multiplier
tests. We assume a multiple linear regression model with Student’s ¢ disturbances
for the estimation of regression coefficients in the model. The plan of this paper
is as follows: In Section 2 we propose some shrinkage preliminary test ridge
regression estimators. Section 3 contains the bias and the risk expressions of the
estimators. In Section 4 we discuss the relative performance of the estimators.
The maximum and minimum guaranteed efliciency are discussed in Section 5.
Finally, concluding remarks have been presented in Section 6.

2. PROPOSED ESTIMATORS OF 3

In order to define the shrinkage preliminary least squares test estimators of
3, we consider three well-known test-statistics for testing Hy : HB = h against
H,4 : HB # h with Student’s t-error, namely (i) the Wald (W) test (ii) the
likelihood ratio (LR) test and (iii) the Lagrangian multiplier (LM) test and they
are given respectively

szum%m

@Rzm%@+%ﬂ,

—1 'fqu
= 2.1
La =27 (), @)
where o+
14
Aln) = L 0<A(n)<1
and

(XB — by (HC™'H') ™ (XB —h)/q

(y — XB)'(y — XB)/m
is the test statistic for testing the null hypothesis (1.2) and follows a central F-
distribution with (g,m) degrees of freedom under Hy (see Zellner, 1976; King,

1980). For details, we refer to Ullah and Zinde-Walsh (1984). Note that if n is
large then A(n) is close to 1 and the results in (2.1) also hold for normal regression

F =

model.
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Ullah and Zinde-Walsh (1984) showed that for test statistics in (2.1), the
following inequalities hold:

Lw < Lrr < Lrpum, if w<wi(Mn)),

Lir < Lw < Lpum, if wi(A(n)) < w < wa(A(n)),

Lw > Lrym > Lirs if wa(A(n)) < w < ws(A(n)),

Lw > Lrr > Lpu, if w> ws(A(n)), (2.2)

where w = Ly /n, and wi(A(n)), wa(A(n)) and wz(A(n)) are respectively the
unique positive roots (depending on A(n)) of the equations

An)w — log(l +w) = 0,
An)w-wl+w) =0,
A(n) log(l +w) —w(l +w)™ = 0.

It follows from (2.2) that the size of the Wald test can be greater or less than the
LR test and LR test can be greater or less than the LM test depending on the
solution for w and the value of A(n).

The exact sampling distribution of the three test statistics can be compli-
cated. Thus in practice the critical regions of the tests are commonly based on
asymptotic approaches (see Kennedy, 1998, Chapter 2; Evans and Savin, 1982).
It is known that the asymptotic distributions of the three tests are approximated
by the chi-squared distribution with ¢ degrees of freedom. Let the a level critical
value of the distribution be Xg(a) as the first approximation. This choice of crit-
ical value for three tests leads to conflict as in the case of finite sample inference.
The inequalities of statistics given in (2.2) will occur if

either Lpr < Xg(a) <Lim or Lw< Xg(a) < LR,

either Lw < x2(@) <Lrm or Lrr<xi{a)<Lw,

either Lrpy < Xg(a) <Lw or Lrr< xg(a) < Lrm,

either Lrr<x2(@) <Lw or Lim < xi(e) < Lir, (2.3)
respectively.

For the normal error case, Evans and Savin (1982) showed that on using the
xg(a) critical value there are two characteristics. First, they will differ with
respect to their sizes and powers in small samples and there may be conflict
between their conclusions. Second, when the sizes of the tests are corrected to
be the same, the power are approximately the same and there may be no any
confliction. For the Student’s ¢ error case, Ullah and Zinde-Walsh (1984) showed
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that the inequalities in (2.2) are complicated, and the relationship among the
sizes of these test and the possibility of conflict is quite different from that of the
normal case. For details we refer Ullah and Zinde-Walsh (1984).

For excellent references and for various researches on W, LR and LM tests,
readers are referred to Savin (1976), Berndt and Savin (1977), Evans and Savin
(1982), Ullah and Zinde-Walsh (1984), Billah and Saleh (2000) and most recently
Kibria and Saleh (2003b) among others.

Based on the above considerations, we propose the following SPTRRE’s based
on W, LR and LM tests, which are given below,

BT (k) = BSR(K)I(L. < Xx2(a)) + BR)I(Ly > x2()), (2.4)

where * stands for either of W, LR and LM tests. Our objective is to compare the
three estimators which have been developed based on the three test procedures.
Therefore, for our convenience we consider the simpler critical value, xz(a) in the
formulation of the preliminary test estimators, which also induces the conflict in
the inference procedures. In the following section, we provide the biases and risks
of the proposed estimators.

3. Biasgs AND RISKS

Let & be an estimator of & and W be a positive semi-definite (psd) matrix,
and consider the following quadratic loss function

L(8,8) = n(§ — 6)W(b - 8) = ntr {W(Zs )6 - 5)'} ,

where tr(A)=trace of the matrix A. Then the risk of § is given by
R(3,6) = nE [tr{W([s —8)(6 - 5)'}] .

The biases of the proposed estimators are

B(BSPT (k) = — {(1 - R(K)NG o, (5 8) +KCT (R)B},  (31)

where 7 = C'H/(HC1H')~1(HB — h),  stands for either of W, LR and LM
tests, and [, stands for any of the followings:

W= xg(e) LR _ | _ o=X2@)/n gng LM — Mn)xg(e)

ni(n) + x2(a)’ n » (32)
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satisfying (" < IR < {“M | Further, we consider the following function

av e P/2+r+i-2) {A/(v—2)}
a2inp(! Tr+ DI (v/2+7-2) {1+ A/(v—2)}/2Hr+2
1 .
x Ip- {§(q+22) +r,—’;3}, (3.3)

where I{-} is the incomplete beta function and I* denotes any of the quantities,

W, IR and 1M, Fori=0and j = 2, G<(17)1 o(I*; A) is the power function of the
tests. Note that for a = 1, the biases and risks of the three estimators coincide
with those of URRE. However, for @ = 0, the biases and risks of the proposed
estimators coincide with those of the RRRE. Since XM > (LR > W for all o, p

and n, it follows that

G @M 8) > GU), (PR A) 2 GY)y (Y5 A); 4,5 = 1,2, (3.4)

The risk expressions for B3 (k), B3ET (k) and B54F (k) are

R(BIFT (k)
= o2tr {R(k)C'R(E)'} - (1 — d®)o’tr {R(k)AR(K)'} Gy, _ (15 4)

q+2n-p
+ (1= A REVRE) {2610, ,(158) = (1 + DG, (15 8)}
+2(1 — kG, ., (1% A)n'R (k) CH(R)B + k2B'C2(K)B, (3.5)
where A = C"'H/(HC~!H')"'HC™! and * stands for either of W, LR and LM
tests, [* stands for any of the quantities in (3.2) and G((;J)rzm o) (1 =1,2) are
available from (3.3).

Now we assume that P be an orthogonal matrix so that
P'CP=A= diag(Ala A2y 7>‘p)’

where Af, Ag, ..., Ap denote the eigenvalues of the matrix C. Since C is symmetric,
we can write

R(k)AR(k) = P (A + kL) " AA*A (A + kL)' P/, (3.6)
where PAP = A*. Now without loss of generality we assume that A; >
Ag > -+ 2> Ap > 0, and we can write,

P : P
{RICREY} =Y 2 and i RIDARK} = o, (37)
i=1 VTt
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where a}; > 0 is the #*" diagonal element of the matrix A*. Also,

P *2
B'CT*(k)B = ; GR (38)

where 8* = P'8, and

Rk M (R C-1 —~ i By
WR(E)R(k)n =}, =ty and 'R(k)'C™' (k)8 = ; o 89

where n* = P'n. Also, from Anderson (1984, Theorem A.2.4, p.590) it follows

that

n'R(k)'R(k)n
< —" 2 <K 1
P = ’n,cn =7, (3 0)

where v; and 1y, are the largest and the smallest characteristic roots of the matrix
R(k)R(k)CL.

Now we are ready to compare the performance of the proposed estimators in
the following section.

4. PERFORMANCE OF THE PROPOSED ESTIMATORS

In this section we compare the performance of the proposed estimators based
on quadratic bias and risk criterion. We assume that v is known. First we
compare the performance of the estimators based on the bias function.

4.1. Bias comparisons

In order to present a clear-cut picture of various bias functions, we transform
them in scalar (quadratic) form by defining,

QB(B; T (k) = B(BIFT (k) B(BIFT (K)),

where x stands for either of W, LR and LM tests. The quadratic biases for
proposed estimators are

QB(BIFT (k)

= (1 - P REVR(II {62, 05 0) )

+2(1 - d)kn'R(kYCT (K)BGY), (1 A) + K2B'C2(k)B,  (4.1)
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where [, stands for either of lyy, Ipgr and Ippr. =1, QB(B;?PT(IC)) reduces to
QB(B(k)) and for a = 0, QB(BSFT (k)) reduces to QB(B5E(k)).

We consider the difference, QB(ﬂSPT( ) — QB(BgVPT(k)), which is non-
negative for any value of a € (0,1), d € (0,1), A and k. Thus, ,QSPT( k) has
smaller quadratic bias than 8357 (k). Similarly, QB(33%T (k)) — QB(BSPT( ) >
0 and B3ET (k) has smaller quadratic bias than B3 PT(k). Thus, we may order
the quadratic bias functions as

QBB T (k) < QB(BIRT (k) < QB(BEA (k). (4.2)

For k = 0 in (4.2), we obtain the order of the quadratic biases for the corre-
sponding shrinkage preliminary test least squares estimators (SPTLSE) based on
LM, LR and W tests. For d = 0 in (4.2), we obtain the order of the quadratic bi-
ases for the corresponding preliminary test ridge regression estimators (PTRRE)
based on LM, LR and W tests. For k = 0 and d = 0 in (4.2), we obtain the
order of the quadratic biases for the corresponding preliminary test least squares
estimators (PTLSE) based on LM, LR and W tests.

4.2. Risk comparisons

We note from (3.5) that for given o and known data, the risks depend on
the departure parameter A and ridge parameter k. Therefore, we will study the
relative performance of the estimators based on values of A and k£ and provide
them in the following two subsections.

4.2.1. Performance as a function of A. In this subsection, we compare the
performance of the proposed estimators as a function of A. First, we compare
between B%PT( ) and BSPT( ). Using (3.5) the risk difference, R(ﬂSPT( ) —
R(BEET(IC)) is non-negative (> 0), whenever

[(1 4 d)tr {R(k)AR(k)'} A — 2ko;*n'R(k)'C~!(k)BB|

A<
- 71 {2B - (1 +d)&}
= Ak, d, ), (4.3)
where
A= Gy, (FFA) —G‘Bz nplV5 ),
B = GEH??TL p(lLR A) q+2n p(lW;A),
&= Gq+4n p(lLR A) q+4n p(lW,A)
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Note from (3.4) that A, B and &, are positive for all k, A and o € (0,1).
Thus, ﬂSPT( ) performs better than ﬁ*EVPT(k), when (4.3) holds. Using equa-
tions (3.7) to (3.9), Ay(k,d, ) can be expressed as

1 (1+d)>2a%A — 2ko72An! B B
1 1 1 4.4
Bilkd,0) = Zop— 1+d5}z{ (hi + k)2 , (44)

which depends on the eigenvalues, bias vectors n* and 8*. However, Bgf T (k)
performs better than 835 PT(k), whenever

1 (1+d)X2aA - 2ka”2/\m‘?‘5*3}
A 7 2 1 3
> 2B - (1+d£}z{ O + F)2
= Ag(k,d, ). (4.5)

Under the null hypothesis the difference, R(,BS PT(k)) — (,BSP T(k)) is always
positive for all o € (0,1) and d € (0,1), therefore, B3ET (k) is superior to BSET (k).

Now we compare between BEET(k’) and ,BSPT(k). Using (3.5) the risk differ-
ence, R(B3ET (k) — R( 33PT (k)) is non-negative (> 0), whenever

1 (1 + d)NalA* — 2ko 2\ B B*
A < Z 7 1 2
S m{2B - (1+d)Er} & (X + k)2
= Asz(k,d, o), (4.6)
where
A* = G(l) (lLM A) — G( ) (lLR'A)
g+2,n—p q+2,n—p ’ ’
. 2
B* = G2y, ("M 8) = G, (1P%; ),
£ = Glanp(t"; ) = Gy, (145 2).

Note from (3.4) that A*, B* and £* are positive for all k&, A and a € (0,1).
Thus, B3ET (k) performs better than ,BSPT( ), when (4.6) holds. However,
SPT(k) performs better than ﬁSPT( ), whenever

As 1 Z { (1+ d)A2al A" — 2ka’2)\,n;‘ﬂ;‘8*}

7o (2B — (1 + d)E*} & (N + k)2
= Ay(k,d, ). (4.7)

Under the null hypothesis the difference, R(B3ET (k)) — R(B3Y T(k)) is always
positive for all @ € (0,1), therefore ﬂ T (k) is superior to ﬁ ( ). Now we
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describe the graph of R(B5FT(k)) as follows. At A = 0, it assumes a value
o2tr{R(k)CT'R(k)'} —o2(1-d®)tr {R (k) AR()' } G g42,n—p(l*; 0)+E2B'C2(k) B,

then increases from 0, crossing the risk of URRE to a maximum and then drops
gradually towards the risk of URRE as A — oo.
Based on the above analysis we may state the following theorem:

THEOREM 4.1. The dominance picture of the proposed estimators is
R(BEH (k) < R(BERT (k) < R(BFFT(K)),
in the interval
A €0, Alz(k,d, )],
where Als(k,d,a) = min{A(k,d, a), As(k,d,a)}, also Ay(k,d, ) and As(k,d,
a) are given in (4.4) and (4.6) respectively, while

R(ByT (k) < RBERT (k) < R(BEH (K)),
in the interval
A € (A;4(k, d’ a)a OO) )

where A}, (k,d, o) = max {Aq(k,d, o), Ay(k,d, )}, also Ao(k,d,a) and A4(k,d,
a) are given in (4.5) and (4.7) respectively. For k = 0, we obtain the correspond-
ing dominance picture for the SPTLSE’s. For d = 0, we obtain the corresponding
dominance picture for the PTRRE’s. For k =0 and d = 0, we obtain the corre-
sponding dominance picture for the PTLSE’s.

4.2.2. Risk comparison as o function of k. In this subsection, we compare the
performance of the proposed estimators as a function of shrinkage parameter k.
First we compare between vap T(k) and BSP PT(k). Thus, using equations (3.7) to
(3.9) the risk difference, R(B3FT (k) — R(B35T (k)) will be non-negative (> 0) if
-1
k< mjn[ 2(1+ d)aj A — {2B — (1 + d)&} ,\m;Q] {max (2n;ﬂ;B)}
= ki(a,d,A), (4.8)

which depends on the eigenvalues, bias vectors n* and 8*. Thus, ﬂSP Tk ) will
dominate B3FT (k) if 0 < k < ki (e, d, A), while B5F7 (k) will dominate 5557 (k)
whenever

-1
k> miax[ 21 + d)ar A — {2B — (1 + d)E} AmIZ] {miin(ZnZﬁZB)}
= ky(a, d, A). (4.9)
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Now we compare between BSP FT(k) and ﬂSP PT(k). Similarly, the risk differ-
ence, R(ﬂSPT( ) — (,BSPT( )) will be non-negative (> 0) if
k < miin [03(1 + d)aj\A* — {2B* — (1 +d)E*} )\mf*] {mlax (27;;‘/8;‘[3*)}-1
= k3(a,d, D). (4.10)
Thus, 347 (k) will dominate BFET (k) if 0 < k < k3(a, d, A), while B3ET (k) will
dominate ,BSP PT (k) whenever
k> max [03(1 +d)ai A — {2B° — (1 +d)E") )\m;&] {miin(Zn;"B;B*)}_l
= k4(a,d, D). (4.11)
Based on the above results, we may state the following theorem.
THEOREM 4.2. The dominance picture of the proposed estimators is
R(BEN (K) < R(BLRT (K)) < R(BW T (K)),

in the interval,
ke [0’ kIB(a7d, A)] ’

where kis(a,d,A) = min {k,(a,d,A), k3(a,d,A)}, also ki(o,d,A) and k3(a,d,
A) are given in (4.8) and (4.10) respectively, while

R(BT (k) < R(BiRE (k) < R(BILT (K)),

in the interval
k € (k;4(a7da A),OO) b

where k%, (a,d, A) = max {ko(a,d, A), k4(a,d, A)}, also ko(a,d, D) and ks(a, d,
A) are given in (4.9) and (4.11) respectively.

Now we consider the conditions on A and % simultaneously and state the
following theorem:

THEOREM 4.3. The dominance picture of the proposed estimators is
R(BIiT (k) < R(BIR (k) < R(BW T (K)),
in the interval,

(A, k) € [0,AT3(k, d, 0)] x [0, kj3(a, d, A)],
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while
R(B3T(k) < R(BIET(K)) < R(BIEF (K)),

n the interval,
(A, k) € (Al3(k,d, @), 00) X (ki3(a,d, A), 00).

We have plotted the risk functions versus A for different n, p, ¢, @ and k& and
presented them in Figures 1 and 2. From these figures we observed that for small
values of A, the SPTRRE based on LM test has the smallest risk followed by the
LR and W tests. However the situation becomes reverse when the restrictions are
more inaccurate. Therefore, the graphical representation support the findings of
the paper.

5. RELATIVE EFFICIENCY

In this section, we describe the relative efficiency of the proposed estimators
for 8. Accordingly, we provide maximum and minimum (Max & Min) rule for
the optimum choice of the level of significance of the SPTRRE for testing the
null hypothesis (1.2). For a fixed value of k& (> 0) the relative efficiency of the
SPTRRE (B5FT(k)) compared to the URRE (B(k)) is a function of o and A.
Let us denote this by

E(k,d,a,A) = _BBK) {1 —h(k,d,a, A)} 7, (5.1)
R(BIFT (k)
where x stands for either of W, LR and LM tests, also
h(k, d, 0, 4) = JULLL ,
P i+ k)2 (/\iag + k2,8;‘2)
and
P
glk,dya, A) = 3 (h + k)™ [ 2(1 - @)xkal — (1 {ZGq+2np A)
1=1

~ U+ d)G p(l*;A)}—z(l— kAT B Gt 1758

For a given n, p, q, d, and k, E(k,d,a, A) is a function of & and A. For a # 0,
it has maximum at A = 0 with value

-1
* 1 "
E (k d, o O) =q1- Jg(l — d2) le(/\i + k) ()\12 ”)Gl(l—22 n—p(l 70) .
S0+ k)72 (Ao? + £28;7)
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FIGURE 2 Rusk functions of the SPTRRE’s based on the W, LR and LM tests for different
significance levels and fired k=0.7 and d=0.5
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As A increases from 0, E(k,d, o, A) decreases and crossing the line E(k,d, o, A)=
1 to a minimum E(k,d, o, A%) at A = A then increases towards 1 as A — oo.
For A = 0 and varying «, we obtain,

-1
02(1 — d®) 0 (N + k) "2(N2a2) }

max E(k,d,co,0)=E(k,d,0,0)={ 1 —
( )= E( ) { S i + k)72 (Ao + k28r2)

0<a<l
The value E(k,d, ,0) decreases as « increases. On the other hand, for a # 0,
the graphs of A versus E(k,d,0,A) and A versus E(k,d,1,A) intersect in the
range 0 < A < A;(k,d,0), where

Al(ka d? 0)
1 P
. [Z(Ai + B2 {0+ ¥ — 0 22k 76, (1))

(1-dm

i=1

Thus in order to choose an estimator with optimum relative efficiency, we
adopt the following rule for given k values. If 0 < A < A;(k,d,0), the SRRE
would be chosen since E(k,d,0,A) is the largest in this interval. However, in
general A is unknown and may not lie in this interval and there is no way
of choosing a uniformly best estimator. In such case we pre-assign a value of
the efficiency Epj, (minimum guaranteed efficiency) and consider the set & =
{a|E(k,d,a, A) > Enin } and choose an estimator which maximizes E(k,d, o, A)
for all « € S and A € [0,00). Thus we solve the following equation:

rggg{ngnE(k,d,a,A) = Fnin- (5.2)

The solution o* for (5.2) gives the optimum choice of @ and the value of A =
Apin(k) for which (5.2) is satisfied. At the same time these values (o*; Apin(k))
yield the corresponding value of optimum k, which can be estimated from the

following equation:
~ 2 _1
blayd. &) = min (o ) [ {20756 a5 )

where

flo, Ay, i)

= [0+ Dain Gl oy 15 8) = Nt {260, (1753

-1+ d)Gf,?L;,n—p(l*; A)} ]
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The above equation is obtained from the difference of R(B(k)) and R(B5FT (k))
and based on the smaller risk criterion. Since

26, (1 A) = (1 +d)GE), (1 A)
* 2 %k
<26, _(158) - G&, . (1*A),

we obtain that the range of k for which the risk of the SPTRRE is less than
that of the URRE, is therefore greater than the range of k for which the risk of
the PTRRE is less than that of the URRE. Hence the proposed SPTRRE has
wider range than the usual preliminary test ridge regression estimator (PTRRE)
in which it dominates the URRE, for any value of v, d and .

Table 1 provides the values of the maximum and minimum guaranteed relative
efficiencies and recommended corresponding size of « of the proposed estimators
for p=4,q=3,d=0.5and n = 10(5)30, v = 5,10 and k = 0.20. Table 2
gives the values of the maximum and minimum guaranteed relative efficiencies
and recommended corresponding size of a of the PTRRE for p = 4, ¢ = 3 and
n = 10(5)30, v = 5,10 and & = 0.20. From Tables 1 and 2, it is observed that
under the restrictions A = 0, the following inequalities (in the sense of higher
guaranteed maximum efficiency) hold for any n,p, k and v

BItf (k) > BiRT (k) > B T (k),

which support the findings of the paper. It is also noted that the gain of efficien-
cies are higher for all proposed estimators for small values of k (related tables
have been deleted to save the space of the paper). From Tables 1 and 2 we also
note that the minimum guaranteed efficiencies of SPTRRE’s based on W, LR
and LM tests are higher than those of PTRRE’s for all n,p, k and v.

How can one use the table? For instance, if n = 15, p = 4, ¢ = 3, v = 10,
k = 0.20, and the experimenter believes that d = 0.5 and wishes to have an
estimator with a minimum guaranteed efficiency of at least 0.95. Now using Table
1, we recommend him/her to select & = 0.025, corresponding to ,8 SPT (L), because
such a choice of o would yield an estimator with a minimum guaranteed efficiency
of 0.95460 and maximum efficiency 1.20588. Note that the size of o corresponding
to the minimum guaranteed efficiency of 0.95 for ,BSPT( ) and ,BSPT( ) are 0.05
and 0.10 respectively. Thus we choose o* = min(0.025,0.05,0.10) = 0.025, which
corresponds to Wald test. If we look at the maximum efficiency vector, (1.20588,
1.20462, 1.21668), we choose either Wald or LM based estimator. However, in the
sense of smaller significant level, we choose Wald test. Again, ifn =15,p=4,q =
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TABLE 1 Maz & Min guaranteed efficiency of SPTRRE’s (p=4, k=0.2, d=0.5)

Test Efficiency for the following values of o

2.5% 5% 10% 15% 2.5% 5% 10% 15%

n =10 v=>5 n=10 vr=10
W | Emax | 1.15798 1.11513 1.08773 1.06797 1.15098 1.10886 1.08231 1.06335
Emin | 0.97853 0.98645 0.99046 0.99295 0.96636 0.97862 0.98489 0.98882
Anmin |21.54605 21.05263 20.72368 20.55921 13.32237 12.66447 12.17105 11.84211
LR | Emax | 1.24080 1.17828 1.13369 1.10076 1.24021 1.17786 1.13339 1.10054
Emin | 0.95219 0.97318 0.98285 0.98831 0.92418 0.95656 0.97188 0.98069
Amin |22.03947 21.38158 20.88816 20.55921 14.80263 13.81579 12.99342 12.50000
LM | Emax | 1.32889 1.29032 1.22633 1.16722 1.32908 1.29967 1.24052 1.18125
FEnmin | 0.86505 0.93199 0.96459 0.97992 0.78590 0.88073 0.93537 0.96280
Amin [26.71053 25.32895 24.63816 24.17763 18.65132 16.80921 15.42763 14.50658

n=15 v=>5 n=15 vr=10
W | Emax | 1.21099 1.15988 1.12429 1.09745 1.20588 1.15481 1.11968 1.09340
Enmin | 0.97198 0.98241 0.98764 0.99088 0.95460 0.97113 0.97959 0.98491
Amin [21.05263 20.55921 20.23026 20.06579 13.15789 12.33553 11.84211 11.51316
LR | Emax | 1.26450 1.20511 1.15865 1.12239 1.26383 1.20462 1.15828 1.12212
FEnin | 0.95461 0.97412 0.98310 0.98824 0.92552 0.95647 0.97119 0.97982
Amin | 22.03947 21.38158 21.05263 20.72368 | |14.30921 13.15789 12.50000 12.00658
LM [ Emax | 1.31711 1.26659 1.20942 1.15953 1.31874 1.27232 1.21668 1.16662
E.i. | 091767 0.95987 0.97710 0.98567 0.86539 0.93138 0.96017 0.97494
Amin | 25.32895 24.40789 23.94737 23.71711 16.57895 14.96711 14.04605 13.35526

n =20 v=>5 n=20 v=10
W | Emax | 1.23574 1.18264 1.14357 1.11328 1.23205 1.17877 1.13996 1.11006
FEmin | 0.96917 0.98071 0.98647 0.99003 0.94925 0.96778 0.97726 0.98320
Amin | 21.05263 20.55921 20.23026 19.90132 12.99342 12.33553 11.84211 11.51316
LR | Emax | 1.27353 1.21646 1.16981 1.13243 1.27284 1.21594 1.16942 1.13213
Enin | 0.95635 0.97476 0.98328 0.98822 0.92777 0.95722 0.97133 0.97970
Amin | 21.87500 21.38158 20.88816 20.55921 13.98026 12.82895 12.33553 11.84211
LM | Emax ; 130994 1.25791 1.20405 1.15756 1.31117 1.26149 1.20846 1.16191
Emin | 093736 0.96824 0.98091 0.98751 0.89756 0.94645 0.96748 0.97868
Amin |24.86842 24.17763 23.94737 23.48684 | [15.65789 14.27632 13.35526 12.89474

n =30 v=35 n=30 v=10
W | Emax | 1.25805 1.20468 1.16281 1.12928 1.25579 1.20222 1.16046 1.12717
Emin | 0.96664 0.97920 0.98544 0.98928 0.94416 0.96463 0.97507 0.98162
Amin | 21.05263 20.55921 20.23026 19.90132 | |12.99342 12.17105 11.67763 11.34868
LR | Emax | 1.28106 1.22655 1.18010 1.14191 1.28035 1.22600 1.17968 1.14159
Enin | 0.95862 0.97563 0.98360 0.98830 0.93083 0.95836 0.97171 0.97974
Amin |21.71053 21.21711 20.72368 20.39474 | |13.48684 12.66447 12.00658 11.67763
LM | Emax | 1.30316 1.25118 1.20039 1.15678 1.30361 1.25277 1.20242 1.15883
Enin | 0.95195 0.97420 0.98368 0.98889 0.92151 0.95702 0.97269 0.98143
Amin | 24.40789 23.94737 23.71711 23.25658 | [14.73684 13.58553 12.89474 12.43421
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TABLE 2 Maz & Min guaranteed efficiency of PTRRE’s (p=4, ¢=38, k=0.2)

Test Efficiency for the following values of a
2.5% 5% 10% 15% 2.5% 5% 10% 15%
n=10 wv=>5 n=10 v =10

w 1.6877 1.4312 1.2982 1.2146 1.6458 1.4025 1.2772 1.1987
0.9012 09375 0.9563 0.9682 0.8830 0.9259 0.9483 0.9625

11.6776 11.1842 10.8553 10.5263 8.7171  8.0592 7.7303 7.4013

5 g
ER

3
z

LR | Emax| 2.1649 1.6615 14223 1.2845 2.1599 1.6593 1.4212 1.2838
i 0.8358 0.9071 0.9403 0.9594 0.7983 0.8840 0.9251 0.9490

min | 12.8290 11.8421 11.3487 11.0197 9.8684 8.7171 8.2237 7.7303

LM | Emax| 3.3802 22374 1.6848 14115 3.4990 2.3661 1.7626 1.4590

0.6444 0.8443 0.9168 0.9505 0.5463 0.7910 0.8877 0.9337
16.8092 14.2763 13.1250 12.6645 14.2763 10.5921 9.4408 8.7500

S
=

DD}@D?}NDB}D}
5

El
=1

n=15 v=5 n=15 vr=10

W | Emax| 2.0599 1.6600 1.4516 1.3219 2.0179 1.6311 1.4306 1.3063
Enin | 0.8773 0.9219 0.9453 0.9601 0.8518 0.9052 0.9336 0.9517
Amin | 11.5132 11.0197 10.6908 10.5263 8.5626 8.0592 7.5658 7.4013
Enmax | 24620 1.8588 1.5558 1.3778 2.4549 1.8556 1.5541 1.3768
Emin | 0.8343 0.9022 0.9353 0.9550 0.7958 0.8778 0.9188 0.9435
Amin | 12.3355 11.5132 11.0197 10.8553 9.3750 8.3882 7.8947 7.5658
LM | Emax | 3.1280 2.1948 1.7161 1.4558 3.1913 2.2565 1.7577 1.4834
FEmin| 0.7682 0.8824 0.9298 0.9548 0.7100 0.8505 0.9109 0.9430
Amin | 14.5066 13.1250 12.6645 12.2040 11.0526 9.4408 8.5197 8.0592

LR

n=20 v=5 n=20 v=10

W [ Emax| 2.2788 1.7966 1.5419 1.3840 2.2427 1.7715 1.5239 1.3708
Enin | 0.8663 0.9146 0.9401 0.9564 0.8369 0.8952 0.9265 0.9465

0.8049 0.8945 0.9342 0.9563 0.7593 0.8690 0.9187 0.9463
13.8158 12.8947 12.4342 12.204 10.1316 8.9803 8.2895 8.0592

g
=1

Amin | 11.5132 11.0197 10.6908 10.3618 8.5526 7.8947 7.5658 7.4013
LR |Emax| 2.6015 19593 1.6256 1.4272 2.5933 1.9555 1.6236 1.4260

Enin | 0.8356 0.9009 0.9335 0.9533 0.7971 0.8763 0.9167 0.9415

Amin | 12.0066 11.3487 11.0197 10.6908 9.0461 8.2237 7.7303 7.5658
LM | Emax | 3.0517 21927 1.7379 1.4810 3.0877 2.2294 1.7640 1.4990

E

A

g
=]

n=30 v=35 n=30 v=10

W | Emax| 2.5112 19455 1.6397 1.4503 24848 1.9272 1.6268 1.4410
E.in | 0.8564 0.9080 0.9355 0.9530 0.8230 0.8859 0.9199 0.9417
Amin | 11.5132 10.8553 10.5263 10.3618 8.5526 7.8947 7.5658 7.2368
LR |Emax| 2.7328 2.0597 1.6969 1.4782 2.7234 2.0554 1.6946 1.4768
Enmin | 0.8380 0.9004 0.9322 0.9519 0.7996 0.8756 0.9152 0.9397
Amin | 11.8421 11.1842 10.8553 10.6908 8.8816 8.0592 7.7303 7.4013
LM } Emax | 3.0010 2.2018 1.7649 1.5097 3.0138 2.2181 1.7774 1.5187
Enin | 0.8314 09037 0.9377 0.9574 0.7950 0.8829 0.9247 0.9489
Amin | 13.3553 12.6645 12.2040 11.9737 9.4408 8.5197 8.0592 7.8290
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3, v =10, k = 0.20, and the experimenter believes that d = 0 and wishes to have
an estimator with a minimum guaranteed efficiency of at least 0.90. Now using
Table 2, we recommend him/her to select a = 0.05, corresponding to ﬁs‘j‘f T(k),
because such a choice of o would yield an estimator with a minimum guaranteed
efficiency of 0.9052 and maximum efficiency 1.6311. The size of a corresponding
to the minimum guaranteed efficiency of 0.90 for BﬁﬁT(k) and BfﬂT(k) are 0.10
and 0.10 respectively. Thus we choose o* = min(0.05,0.10,0.10) = 0.05, which is
corresponds to Wald test. If we look at the maximum efficiency vector, (1.6311,
1.5541, 1.7577), we choose either Wald or LM based estimators. But, in the
sense of smaller significant level, we choose Wald test. Therefore, using both
SPTRRE and PTRRE, we obtain the smallest significance level corresponding to
Wald test in the sense having highest minimum guaranteed efficiency. We note
that the minimum guaranteed efficiencies of SPTRRE are always larger then
the corresponding PTRRE. Therefore, from the application point of view, it is
advisable to use SPTRRE based on Wald test among three test procedures.

6. CONCLUDING REMARKS

In this paper we studied the effect of W, LR and LM tests on the performance
of the SPTRRE for the regression parameters when there exists a uncertain
prior information in the parameter space. In literature, it is known that these
test statistics satisfy the inequalities in (2.2). Thus there may exist conflict in
the resulting test conclusions when certain fixed critical value is chosen. We
have effectively determined some conditions on the departure parameter and the
ridge parameter for the superiority of the proposed estimators. Note that the
superiority of the proposed estimators depends on data and the information about
the hypothesis. We have also discussed the method of choosing optimum level
of significance to obtain minimum guaranteed eflicient estimator. Under the
restriction, the SPTRRE based on LM test has the smallest risk followed by
the estimators based on LR and W tests. However, the SPTRRE based on
W test performs the best followed by the LR and LM based estimators when
the parameter moves away from the subspace of the restrictions. The SPTRRE
based on W test is found to perform the best with the choice of the smallest level
of significance to yield the best estimator in the sense of the highest minimum
guaranteed efficiency. We note that the SPTRRE provides the higher minimum
guaranteed efficiency compared to PTRRE. The most significant feature of the
results of our example is that the optimum choice of the level of significance
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becomes the traditional choice by the W test. The results of this paper also
hold for SPTLSE, PTRRE and PTLSE based on W, LR and LM tests. We may
expect that the analysis which have been done in this paper will be useful when
the underlying distribution is normal for large v and Cauchy for v = 1. Finally,
based on the findings of this paper, we recommend the practitioner to use Wald
test among three test procedures, when they consider the SPTRRE for estimating
the regression parameters 3.
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