Pacing 적용을 통한 High-Speed TCP 프로토콜의 성능 개선 방안

Performance Enhancement of High-Speed TCP Protocols using Pacing

  • 최영수 (경북대학교 전자전기컴퓨터학부) ;
  • 이강원 (경북대학교 전자전기컴퓨터학부) ;
  • 조유제 (경북대학교 전자전기컴퓨터학부) ;
  • 한태만 (한국전자통신연구원)
  • 발행 : 2004.12.01

초록

지금의 high-speed TCP 프로토콜은 공정성과 TCP friendliness에 심각한 문제가 있으며, 이는 high-speed TCP의 도입에 있어 중요한 문제가 된다. 본 논문에서는 high-speed TCP의 버스터한 특성을 줄여 TCP friendliness와 공평성 향상시키는 방안으로 high-speed TCP에 pacing 적용을 제시하고 성능 분석을 수행하였다. Pacing은 TCP 송신원의 수정만으로 적용 가능하며 TCP 혼잡 제어 방식과는 독립적으로 동작하기 때문에 도입이 쉽다는 장점을 가진다. 시뮬레이션 결과 제안된 방안은 high-speed TCP의 버스터한 특성을 효과적으로 줄이고 성능 저하 없이 기존의 high-speed TCP에 비해 향상된 TCP friendliness와 RTT에 따른 공정성을 제공함을 보였다.

Recent studies have pointed out that existing high-speed TCP protocols have a severe unfairness and TCP friendliness problem. As the congestion window achieved by a high-speed TCP connection can be quite large, there is a strong possibility that the sender will transmit a large burst of packets. As such, the current congestion control mechanisms of high-speed TCP can lead to bursty traffic flows in hi인 speed networks, with a negative impact on both TCP friendliness and RTT unfairness. The proposed solution to these problems is to evenly space the data sent into the network over an entire round-trip time. Accordingly, the current paper evaluates this approach with a high bandwidth-delay product network and shows that pacing offers better TCP friendliness and fairness without degrading the bandwidth scalability.

키워드

참고문헌

  1. The ATLAS Experiment : http://at1asexperiment.org/
  2. OptIPuter : http://www.calit2.net/news/2002/9-25-opdputer.html
  3. D. Katabi, Mark Handley, and Charles Rohrs, 'Internet Congestion Control for High Bandwidth-Delay Product Networks,' In Proceedings of the ACM Sigcomm, Aug. 2002
  4. S. Floyd, 'HighSpeed TCP for Large Congestion Windows,' RFC3649, Dec. 2003
  5. T. Kelly, 'Scalable TCP: Improving Performance in Highspeed Wide Area Networks', ACM Computer Communication Review, vo1.33, no. 2, pp. 83-91, Apr. 2003 https://doi.org/10.1145/956981.956989
  6. C. Jin, D. X. Wei, and S. H. Low, 'FAST TCP: motivation, architecture, algorithms, perfonnance,' In Proceedings of the IEEE Infocom, March, 2004
  7. L. Xu, K. Harfoush, and I. Rhee, 'BinaryIncrease Congestion Control for Past, Long Distance Networks,' In Proceedings of IEEE Infocom, March, 2004
  8. H. Bullot, R. Cottrell, and R. Hughes-Jones, 'Evaluation of Advanced TCP Stacks on Fast Long-Distance Production Networks,' In Proceedings of Second International Workshop on Protocols for Fast Long-Distance Networks, 2004
  9. P. Gevros, F. Risso, and P. Kirstein, 'Analysis of a Method for Differential TCP Service,' hi Proceedings of the IEEE Globecom, vol. 3, pp.1699-1708, Dec. 1999
  10. J. Crowcroft and P. Oechslin, 'Differentiated End-to-end Services using a Weighted Proportional Fair Share TCP,' ACM Computer Communication Review, vol. 28, no. 3, pp.53-69, 1998 https://doi.org/10.1145/293927.293930
  11. S. Ravot, 'TCP transfers over high latency/bandwidth networks & Grid DT,' In Proceedings of First Internationat Workshop on Protocols for Fast Long-Distance Networks, Feb. 2003
  12. T. Dunigan, M. Mathis, and B. Tiemey, 'A TCP Tuning Daemon,' In Proceedings of SuperComputing: High Performance Networking and Computing, 2002
  13. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, and S.Tuecke.,'GridFTP Protocol Specification,' Global Grid Forum Recommendation GFD.20, 2003
  14. H. Sivakumar, S. Bailey, and R. L. Grossman, 'PSockets: The case for application-level network striping for data intensive applications using high speed wide area networks,' In Proceedings of the 2000 ACM/IEEE conference on Supercomputing, 2000
  15. Jumbo Frame Information : http://sd.wareonearth.coin/~phi1/net/jumbo/
  16. J. Padhye, V. Firoiu, D. Towsley, and J. Kiusoe, 'Modeling TCP Throughput: A Simple Model and its Empirical Validation,' In Proceedings of ACM Sigcomm, pp. 303-314, 1998
  17. bbcp : http://www.slac.stanford.edu/~abh/
  18. B. Tierney, J. Lee, T. Chen, H. Herzog, G. Hoo, G. Jin, and B. Johnston, 'Distributed parallel data storage systems: A scalable approach to high speed image servers,' in Proceedings of the Second ACM International Conference on Multimedia, 1994
  19. bbftp : http://doc.in2p3.fr/bbftp/
  20. L. Zhang, S. Shenker, and D. Clark, 'Observations on the Dynamics of a Congestion Control Algorithm: The Effects of Two Way Traffic,' In Proceedings of the ACM Sigcomm, pp. 133-147, Sept. 1991
  21. M. Aron and P. Druschel, 'TCP: Improving startup dynamics by adaptive timers and congestion control,' Technical Report TR98-318, Rice University, 1998
  22. V. N. Padmanabhan and R. H. Katz, 'TCP fast start: A technique for speeding up web transfers,' In Proceedings of the IEEE Globecom, 1998
  23. J. Hoe, 'Improving the start-up behavior of a congestion control scheme foi TCP,' ACM Computer Communication Review, vol. 26, no.4, pp. 270-280, Oct. 1996 https://doi.org/10.1145/248157.248180
  24. M. Mathis, J. Semke, J. Madhavi, and K. Lahey, 'The Rate-Halving Algorithm for TCP Congestion Control,' Work in Progress, Internet Draft, June, 1999
  25. V. Visweswaraiah and J. Heidemann, 'Improving Restart of Idle TCP Connections,' Technical Report TR97-661, University of Southern California, 1997
  26. J. Martin, A. Nilsson, and I. Rhee, 'Delay Based Congestion Avoidance for TCP,' IEEE/ACM Transactions on Networking, vol. 11, no. 3, pp. 356-369, 2003 https://doi.org/10.1109/TNET.2003.813038
  27. The Network Simulator ns2
  28. S. Floyd and E. Kohler, 'Intemet Research Needs Better Models,' ACM Computer Communication Review, vol. 33, no.l, pp.29-34, Jan. 2003 https://doi.org/10.1145/774763.774767
  29. A. Aggarwal, S. Savage, and T. Anderson, 'Understanding the Performance of TCP Pacing,' in Proceedings of IEEE Infocom, 2000