DOI QR코드

DOI QR Code

Synthesis of SiC Nanotube by CNT-confined Reaction

CNT-confined reaction에 의한 탄화규소 나노튜브의 합성

  • 노대호 (고려대학교 재료공학과) ;
  • 김재수 (한국과학기술연구원 금속공정연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 양재웅 (대진대학교 신소재공학과) ;
  • 김나리 (고려대학교 재료공학과)
  • Published : 2004.03.01

Abstract

SiC nanotubes were synthesized by CNT-confined reaction. Evaporated SiO gas reacted with carbon nanotubes by VS growth mechanism. By confineded reaction, carbon nanotube was changed to SiC nanotube, and synthesized SiC nanotube was filled partly by the gas reaction in the nanotubes. SiC nanotube's mean diameters were not changed than carbon nanotubes because of means ratio of $CO_2$ and SiO gas was maintained evenly during the process. This result was same of data of simulation. By TEM observastion, SiC nanotube was filled by reaction of inner wall of CNT and SiO gas through the VS reactions. Converted SiC nanotube's compositions were revealed Si and C of 1: 1 ratios at all sites of nanotube by EDS.

Keywords

References

  1. G. E. Gadd, M. Blackford, D. Moricca, N. Webb, P. J. Evans, A. M. Smith, G. Jacobson, S. Leung, A. Dat and Q. Hun, Science, 277, 933 (1997) https://doi.org/10.1126/science.277.5328.933
  2. Y. S. Shi, C. C. Zhu, W. Qikun and Li. Xin, Diamond and Related Materials, 12(9), 1449 (2003) https://doi.org/10.1016/S0925-9635(03)00170-5
  3. Y. M. Wong, W. P. Kang, J. L. Davidson, A. Wisitsora and K. L. Soh, Sensors and Actuators B: Chemical, 93(1), 327 (2003) https://doi.org/10.1016/S0925-4005(03)00213-2
  4. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater, Res., 13(6), 404 (2003) https://doi.org/10.3740/MRSK.2003.13.6.404
  5. J. Zhang, L. Zhang, F. Jianf and Z. Dai, Chem. Phys. Lett., 383(3), 423 (2004) https://doi.org/10.1016/j.cplett.2003.11.057
  6. G. W. Meng, L. D. Zhand, C. M. Mo, F. Phillipp, Y. Qin, H. J. Li, S. P. Feng and S. Y. Zhang, Mater. Res. Bull., 34(5), 783 (1999) https://doi.org/10.1016/S0025-5408(99)00073-2
  7. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater, Res., 13(10), 677 (2003) https://doi.org/10.3740/MRSK.2003.13.10.677
  8. Y. B. Li, S. S. Xie, X. P. Zhou, D. S. Tang, Z. Q. Jiu, W. Y. Zhou and G. Wang, J. Crystal Growth, 223(2), 125 (2000) https://doi.org/10.1016/S0022-0248(01)00597-8
  9. W. Shi, Y, Zheng, H. Peng, N. wang, C. S. Lee and S. T. Lee, J. Am. Ceram. Soc., 83(12), 3228 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01714.x
  10. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, J. Kor. Met. & Mater., 41(9), 600 (2003)
  11. Y. Yao, S. T. Lee and F. H. Li, Chem. Phys. Lett., 381(5), 628 (2003) https://doi.org/10.1016/j.cplett.2003.09.149
  12. X. H. Sun, C. D. Li, W. K. Wong, N. B. Wong, C. S. Lee, S. T. Lee and B. K. Teo, J. Am. Chem. Soc., 124(48), 14464 (2002) https://doi.org/10.1021/ja0273997
  13. J. B. Yoo, J. H. Han, S. H. Choi, T. Y. Lee, C. Y. Park, T. W. Jeong, J. H. Lee, S. G. Yu, G. S. Park and W. K. Yi, Physica B: Condensed Matter, 323(1), 180 (2002) https://doi.org/10.1016/S0921-4526(02)00894-3
  14. C. C. Tang, S. S. Fan, H. Y. Dong, J. H. Zhao, C. Zhang, P. Li and Q. Gu, J. Crystal Growth, 210(4), 595 (2000) https://doi.org/10.1016/S0022-0248(99)00737-X
  15. Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang and S. Ijima, Solid, State Comm., 112(1), 35 (1999) https://doi.org/10.1016/S0038-1098(99)00278-1
  16. Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue and S. L. Zhang, J. Phys. & Chem. of Solids, 61(7), 1031 (2000) https://doi.org/10.1016/S0022-3697(99)00358-3
  17. X. T. Zhou, H. L. Lai, H. Y. Peng, F. C. K. Au, L. S. Liao, N. Wang, I. Bello, C. S. Lee and S. T. Lee, Chem. Phys. Lett., 318(1), 58 (2000) https://doi.org/10.1016/S0009-2614(99)01398-6
  18. Y. Zhang, N. wang, R. He, S. Miaigno, I. Zhu and X. Zhang, Chem. Mater., 14(8) 3564 (2002) https://doi.org/10.1021/cm0201697
  19. J. W. Liu, D. Y. Zhang, F. Q. Xie, M. Sun, E. G. Wang and W. X. Liu. Chem. Phys. Lett., 348(5), 357 (2001) https://doi.org/10.1016/S0009-2614(01)01113-7
  20. W. han, S. fan, Q. Li, W. Liang, B. Gu and D. Yu, Chem Phys. Lett., 265, 374 (1997) https://doi.org/10.1016/S0009-2614(96)01441-8
  21. M. Shajahan, Y. H. Mo, A. K. M. F. Kibria, K. C. Kim, K. S. Nahm and E. K. Suh, J. Kor. Phys. Soc., 41(5), 789 (2002)
  22. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. wang, X. Z. Gai, Q. L. Hang, G. C. Xiang and S. Q. Feng, Chem. Phys. Lett., 303(3), 311 (1999) https://doi.org/10.1016/S0009-2614(99)00066-4
  23. H. J. Li, Z. J. Li, A. L. Meng, K. Z. Li, X. N. Zhang and Y. P. Xu, J. Alloys and Compounds, 352(2), 279 (2003) https://doi.org/10.1016/S0925-8388(02)01111-8
  24. B. C. Satishkumar, P. J. Thomas, A. Govindara and C. N. R. Rao, Appl. Phys. Lett., 77(16), 2530 (2000) https://doi.org/10.1063/1.1319185