동양활석광상에서 산출되는 서로 다른 기원의 활석에 대한 광물화학

Mineral Chemistry of Talc from Different Origins in the Dongyang Talc Deposit

  • 발행 : 2004.12.01

초록

동양활석광상에서 산출되는 백운석기원 활석(활석 I)과 투각섬석기원 활석(활석 II)의 차이를 밝히기 위해 광물조성을 연구하였다. 활석 II의 철과 알루미늄 평균 함량이 각각 2.18 wt%와 0.31 wt%이고, 활석 각각 1.48 wt%와 0.08 wt%로서 전자의 경우가 높다. 활석 I보다 활석 II에서 Mg/(Mg+Fe+Mn)비가 일정한 값으로 꾸준히 낮고, 마찬가지로 Al 함량이 높은 것은 이들의 근원물질인 투각섬석과 백운석의 조성의 차이에서 기인된 것으로 보인다. 활석 II에서의 Al과 Fe가 투각섬석 경우보다 부화된 것은 변질작용 중에 이들 원소의 불유동성과 열수용액의 급격한 확산에 기인된 것으로 해석되며, 후자의 경우 활석 ll의 불완전성장과 함께 순간적인 성핵을 촉진시키게 된다. 광석 중에 투각섬석기원 활석의 양이 증가하면 투각섬석 자체의 함량과 Al과 Fe 등의 불순물 증가로 인해 광석의 품위는 저하된다.

Mineral chemistry of talc from the Dongyang talc deposits was studied to characterize the differences between dolomite-origin talc (talc I) and tremolite-origin talc (talc II). Average iron and aluminum contents are higher in talc II, 2.18 wt% FeO and 0.31 wt% $Al_2$O$_3$), than in talc I, 1.48 wt% FeO and 0.08 wt% $Al_2$O$_3$). Consistently lower Mg/(Mg+Fe+Mn) ratios and higher AI concentrations with uniform values of talc II compared to talc I seem to reflect the compositional differences of the original materials, tremolite and dolomite, respectively. Relative enrichment of Al as well as Fe in talc II compared to tremolite can be attributed to their immobile behaviors during alteration process and the rapid diffusion of hydrothermal fluids, which can accelerate instantaneous nucleation with immaturity growth of talc II. Increase in the concentrations of talc II can lower the ore grade by increasing concentrations of impure components such as AI and Fe, and by abundant presence of tremolite as well.

키워드

참고문헌

  1. Ahn, J.H., Lee, I., and Kim, J-M. (2000) High resolution transmission electron microscopy of tremolite-to-talc reaction at the Dongyang talc deposit. J. Mineral. Soc. Korea, 13, 84-95.
  2. El-Sharkawy, M.F. (2000) Talc mineralization of ultramafic affinity in the Eastern Desert of Egypt. Mineral. Deposita, 35, 346-363.
  3. Kerrick, D.M., Lasaga, A.C., and Rateburn, S.P. (1991) Kinetics of heterogeneous reactions. In: D. M. Kerrick, ed, Contact Metamorphism, Reviews in Mineralogy, 26, 583-671.
  4. Kim, G.Y. (1997) Electron microscopic study on the talc mineralization in the Yesan-Gongju-Cheongyang area, Korea. Ph. D. thesis, Seoul Nat'l Univ., Seoul, (unpublished), 259p.
  5. Kim, H.S. and Cho, D.S. (1993) Genesis of talc deposits in the Chungju area, Korea. J. Petrol. Soc. Korea, 2, 95-103.
  6. Kim, O.J., Park, H.I., and Kiln, K.T. (1963) Report on geologic investigation of Dongyang talc deposit. Ilshin Industrial Co. Ltd. (unpublished), 40p.
  7. Lee, J.H. (1987) Origin of talc deposits in the Chungju area; Origin and types of initial rocks and their origin. J. Geol. Soc. Korea, 23, 173-188.
  8. Moine, B., Fortune, J.P., Moreau, P., and Viguier. F. (1989) Comparative mineralogy, geochemistry and conditions of formation of two metasomatic talc and chlorite deposits: Trimouns (Pyrenees, France) and Rabenwald (Eastern Alps, Austria). Econ. Geol., 84, 1398-1416.
  9. Moon, H.S. and Kirn, S.T. (1988) The origin and mineralization of the Dongyang Talc Deposits. J. Korean Inst. Mining Geol., 21, 235-255.
  10. Park, H.I., Lee, I.S., and Hur, S.D. (1995) Talc mineralization in the middle Ogcheon metamorphic belt (I): with emphasis of the stable isotope studies of the Dongyang talc deposit. Econ. Environ. Geol., 28, 635-646.
  11. Reedman, H.H., Fletcher, C.J.N., Evans, R.B., Workman, D.R., Yoon, K.S., Rhyu, H.S., Jcong, S.W., and Park, J.N. (1973) Geology of the IIwanggangni mining district, Republic of Korea. Anglo-Korean Mineral Exploration Group, 1-118.
  12. Robinson, P., Spear, F.S., Schurnacher, J.C., Laird, J., Klein, C., Evans, B.W., and Doolan, B.L. (1982) Phase relations of metamorphic amphiboles: natural occurrence and theory. In: Veblen, D.R. and Ribbe, P.II., eds., Amphiboles: Petrology and Experimental Phase Relations, Reviews in Mineralogy, 98, Mineralogical Society of America, 1-227.
  13. Shin, D.B. and Lee, I.S. (2002) Carbonate-Hosted Talc Deposits in the Contact Aureole of Igneous Intrusion (Hwanggangri Mineralized Zone, South Korea): geochemistry, phase relationships, and stable isotope studies. Ore Geol. Rev. 22, 17-39.