RECENBESE
#29% #3
2004F 9

An Impact Analysis of Window Mechanism and End to End
Delay of Tandem Queueing Network
with Constant Service Times

Young Rhee*

® Abstract m—

In this paper, we investigate the impact of window mechanisms on end to end delay in a series of nodes with
constant service times. It is shown that arbitrary combinations of window mechanisms, each applying to an arbitrary
subset of data, can be embedded on the nodes without affecting the departure instants from the system if the windows
are at least as large as the number of nodes spanned. The window mechanisms are shown to have no impact on
the average end to end delay of data. As the condition on the windows is a minimal necessary requirement for full
parallelism, the results show that the transparent operation from viewpoint of data transmission can be achieved with
minimal resources.

Keyword : Constant Service Times, End to End Delay, Window Mechanism

=28+ Y 20034 128 39 =EAMERIY: 20044 73 31¢
s AR SE YA 2RT R 2HF

1. Introduction

Communication network protocols are de-
signed a layered structure along the line of the
OSI modell2, 4). A common means of implement-
ing the required sequencing, pacing, congestion
control, and data integrity functions of protocol
layer is a multiple window mechanism, say a
sliding window mechanism. As it were, the win-
dow mechanism is a means for regulating the
flow of active customers through the service no-
des in distributed networks. This mechanism is
widely applied in data transmission network, as
it is the standard level 2 data link flow control,
and for level 3 end-to—end flow control. Even if
the remote process call and the buffer manage-
ment schemes are conventionally encountered
and well modeled as the window mechanism.
The word window in the term window mecha-
nism refers to an extra buffer, created by both
the sender and the receiver in the communication
network. A window mechanism limits the total
number of frames or packets within the set of
nodes that it controls. Specifically, it blocks ar-
riving frames in front of the node, preventing
that node from accepting further work when the
number of active frames reaches a predefined
threshold. The threshold is usually called the
window size or window. As active frames con-
sume resources while waiting in the buffers, the
window mechanisms simplify and reduce the
cost of provision the service nodes because they
limits the resources required to manage the
frames.

The window mechanism has been extensively
studied, especially in the context of communica-
tion networks. Reiser{8] modeled a computer

communication system consisting of many vir-

tual routes with end to end window flow control,
as a closed multichain queueing network under
the assumption of a loss system. Reiser [7] and
Thomasian and Bay [12] use a flow eguivelent
server technique to model the sliding window
link as a single server queue with state depend-
ent service rate. In this approach, the effect of
delays due to all sequence numbers in use is ac—
counted for in the delivery service time of the
equivalent server. Varghee, Chou and Nilsson
{13] analyzed an open queueing network without
an acknowledgment delay using approximation
method. The performance of the mechanism un-
der the nominal operation, and in the presence
of stress conditions such as transmission errors,
loss or the delay of frames are well fittec [2].
Fdida, Perros and Wilk [4] present a methodology
for analyzing arbitrary configurations of sliding
window controlled networks. Each layer of slid-
ing window protocol is reduced tc a state de-
pendent infinite server queue without explicit ac-
knowledgements, using a flow-equivalent meth-
odology. A different approach proposed by Dall-
ery [3] is about a single class open queueing net-
work with general service times. The basic open
model is transformed into an equivalent closed
model. Also, a closed queueing network with
general service times and population constrained
subnetwork is analyzed [1].

Shapiro and Perros {11] present a hierarchical
method for analyzing nested sliding window
controlled layers. Each layer with sliding win—
dow protocol is reduced to a single queue without
explicit acknowledgements. The analysis is also
restricted to a single hop (no intermediate sta-
tions) connection. Rhee and Perros [9, 10] present
a multilayered window flow control, where the

population constraint within each subnetwork is

A% Al Ak

controlled by a semaphore queue. A major char-
acteristic of multilayered window flow control is
that the lower layer flow is halted by the state
of the high layer. It is shown that the queueing
network can be transformed into a simplified
queueing network. A single-hop OSI structured
network with multiple layers of sliding window
flow control and packet fragmentation between
layers is analyzed by Shapiro and Perros [11].
These types of queueing networks have applica-
tions in the manufacturing system. Liberopoulos
and Dallery [6] analyzed a multi-stage manu-
facturing systems in which several production
activities have been functionally aggregated into
different production stage so that pull production
control can be exercised in between stages.
However, due to the complexity of the inter—
ferences, the previous analysis generally does
not carry to more complex, vet frequently en—
countered, system where multiple window me-
chanisms interfere with each other. The goal of
this paper is to study the dynamics of the win-
dow mechanisms in such systems, with em-
phasis on the window choice. The primary con-
cern of this paper is to analyze the impact of the
window flow mechanisms on performance : that
is, throughput and end-to-end delay under the
typical conditions. It will not be concerned by
performance under the exceptional circumstances
such as data transmission errors or the loss of
data. To minimize the resources with which the
service nodes must be provisioned, the window
flow mechanisms should have the smallest possi-
ble windows. The windows can not be so small
as to interfere the full operation of the service
nodes, since this may degrade the performance
of the communication system. The selection of
the windows is made through a detailed analysis

e AN)99 F0F A4 4Es T2 9% 24 101

of the internal dynamics of the system, account-
ing for the impact of the window flow mecha-
nisms on the movements of data. As the window
mechanisms strongly correlate the nodes that
they control, this analysis is often not trivial.
One must convert to Petri networks, blocking
networks, or simulation to tackle the correlation
between windows and performance instead of
applying a typical queueing network analysis.

In this paper, we consider a system consisting
of a series of sequentially accessed service nodes
in which data have identical requirements at each
node. For the reasons of simplicity, modularity
and efficiency, this kind of system is frequently
encountered, either independently or as a compo-
nent in a complex communicétion system. Al-
though window mechanisms may strongly influ-
ence where data or frames wait internally in the
system, it is shown that they have no influence
on their overall delay when the window size meet
a certain condition, called the minimal condition.
For engineering purposes, the condition allows
to neglect the modeling of the window mecha-
nisms without loss of accuracy, and also allows
wide application of the simpler modeling tools.
The condition states the window of every mech-
anism should be at least as large as the number
of servers controlled by the mechanism. This
minimal requirement to provide full resource
possession is proved partially by Rhee and
Perros [9]. This paper considers the applicability
of internal dynamics of window mechanism in
the wide communication network.

This paper is organized as follows. Section 2
presents the basic window mechanism, notation
and assumption to develop network modeling. In
section 3, we show some properties to provide

the main results. Section 4 illustrates and ex-

102

o

tends the properties of section 3 as an example.

Section 5 concludes with comments and sugges-
tions for further interests.

2. A window model under
the study

Let us consider a basic window mechanism as
shown in [Figure 1]. Data or frames arrive at the
external gueuve first. They access in sequence
nodes, 1,2, ---,n and leave. To join the first queue,
every frame must grab a free token. Once they
have one, they keep it until they leave the n”
queue. Frames at the external queue may grab
tokens as soon as they are released by preceding
frames departing from the final n” node. The to-
tal number of tokens, called the window, is the
control parameter of the mechanism.

External queue

gate K

[Figure 1] Basic window model

In general, many window mechanisms may be
embedded on the series of nodes such as [Figure
1]). The mechanisms may differ on the location
of their gate, on the point where their tokens are
released, or on their windows. In addition, data
may not all be regulated by the same mechan-
isms. Data may be discriminated based on some
attributes, and different data may be regulated
on the other way. The scheduling disciplines at
the external queue and at each queue are work-
conserving and non-preemptive. This means
that free token can not be withheld when there

are data waiting at the external queue, the server
can not be idle when there are data waiting and
the processing of data can not be interrupted
once started. The time for grabbing a token is
negligible at the external queue. The service time
at each node is the same for all data, which
means a constant service time. However, the
service times may differ for different nodes.
Let K be the windows in [Figure 1]. The iden-
tity of the i* data arriving to the system is de-
noted c,, its arrival time, <, Finally, s; denntes
the service time at the j* node, j=1,2,,m It
is assumed that a, may explicitly depend only on
the departure instants from the system up to the
arrival of ¢;. This is consistent with the view
that whatever generates a; sees the system as
a blackbox. It has no knowledge of the internal
dynamics of the system, and hence cannot make
a; depend on it. However, it can observe the de-
parture process, and make «; depend explicitly
on the departure instants. Note that the assump-
tion is still somewhat restrictive because the de-
pendancy may only be through the departure in-
stants, but not the particular identities of the
data.

3. Some properties on trans-
parent operation.

In this section, we prove a sufficient condition
for achieving some sort of transparent operztions

from an input and output point of view.

Property 1 : Let us consider a series of nodes
with embedded window mechanisms All as-
sumptions are already defined in section 2. The
arrangement of window mechanisms is arbitr—
ary. The subset of the window mechanisms that

B IS A2 2E P drjgEe) SHE Ada deg T 9% B4 1083

apply to each data is also arbitrary, and may dif-
fer for different arriving data. Let m be the node
whose service time is the largest among the all
nodes. Let d; be the departure time of the :* data.
After the node m, the data do not wait, neither

at the node nor at the server.

proof : By induction on the departure instants,
we assume that the first (i—1) departure in-
stants are independent of the specific windows.
It is shown that this holds for the :* departure
instant. Given the assumptions of the proposi-
tion, it is readily established that the data which
arrives first is the one which depart first. This
is readily verified for ¢,. Assume by induction
that it holds for the first (j—1) data which de-
parts from the node m. Then, these data are re-
spectively ¢;, ¢y, ,c(j—1). Let ¢ be the data
which leaves the node m after c(;_;,. When ¢
leaves the node m, all external queues after the
node m are empty and all noders after the node
m contains at most one data. In addition, ¢(;_,,
departs from the node (m+1) is no later than
when ¢ departs from the node m, since the mini-
mum inter-departure time from the node m is at
least as large as the service time at the node
(m+1).

Suppose that there is a window mechanism
whose gate is in front of node (m+1) and that
is applied to ¢. As the window is at least as large
as the number of nodes spanned, as all external
queues and node (m+1) are empty and as node
(m+2), (m+3), -, and » contain at most 1 da-
ta, ¢ must find a free token of the mechanism
immediately upon departing from the node
(m+1). Since this relationship applies generi-
cally to all window mechanisms whose gate is
in front of the node (m+ 1) and that applies to

¢, it follows that ¢ starts service at the node
(m+1) immediately upon departing from the
node m. This is the reason that ¢ does not wait
at the node (m+1) nor at any external queue be~
tween the node m and the node (m+1).

If ¢;, ¢3,, ¢(j-p and ¢ do not wait between
the node m and the node (m+1), their minimum
inter-departure time from the node (m+1) is the
same as for the node m, and ¢ is the next data
to depart from the node after ¢(;_,,. From this
observation, the argument can be repeated to
show that ¢ does not wait between its departure
from the node (m+1) and the node (m+2), and
so no for all subsequent nodes. Therefore, ¢ does
not wait after the node m and the minimum in-
ter-departure time at the node m, (m+1), -,

nis s,. And, c¢,, &= 1,2,-,i— ljoins the node

q at time d¢_;,—(i—k—Ds, - 2 s;. This is
I=gq

because ¢, departs from the node =z at least
(i—k—1Ds ,, before c¢(;_), and enters the node
q at least that time minus all the service times
from the node ¢ to the node » W

Property 2 : If the size of every window mecha-
nisms is at least as large as the number of tokens
spanned by the mechanism, then the departure
instants from the system are independent of the
specific values of the windows.

proof : Let assume that there is a window
mechanism of size K whose gate is in front of
the node ¢ and whose tokens are released in
front of the node ». If the tokens are released
after the node #, then set »=x+1. By assuming
7> K, we have to prove that the first to release
its token does so at most at time d;_,, —(K—1)

n
sm— 2 5; among the K data in ¢y, ¢y, **, ciop
i=r

104 o]
E I e

who last had a token. In the worst case for the
bound, the X data who last had a token among

€1y €307, € (i1 AR C(im ™ C(i—y. The (i—w) ®
data, c(;—w) joins the node » at most at time
dii—y— (K~ 1)3'"‘,2 s;, and must have relin-
quished its token by then. Two cases are dis-
tinguished depending if @;> d(;—y— sm -jg"; 55,

and hence must have relinquished its token by
then. Two cases can be classified depending on

n
if a;2 d(i—1)+sm— ZS,’ or not.
i=1

n
L Case : Ll,-Z d(i_‘)-‘rs,,,— ZS)'
=1

From the case assumption, we need to prove
that d;=a;+ 2} s;, independent of the specific
i~

windows. It may first noted that ¢; joins the node

g, ¢=1,2,-+,n at the earliest at time ,
gq—1 n
a;— ZSI-Z d(,-_l)-f's,,,— ZSj (1)
=1 i=g

And, ¢y, ¢y, -, and ¢ ;- y have by then departed
the node ¢. Suppose there is a window mecha-
nism whose gate is in front of the node 1 and
whose tokens are released in front of the node
». And suppose further that the size of its win-
dow is K and that it applies to ¢, Noting that
a token for c¢; is initially available if < Kand

a token for c¢; must become available at most at
time max {0,d ;- y—(K—1)s,,— X s;}. By as-
j=r

sumption, K >»—1, ie, the window size at least
as large as the number of nodes spanned, this
time is less than the right hand side of (1). This
implies that the :* data, ¢, finds a free token of

the mechanism immediately upon arrival.

As the window mechanism is generic, it fol-
lows that the :* data, ¢; finds a free token of
every window mechanism whose gate is in front
of the node 1. Hence, c¢; joins the first node im-
mediately upon arrival. As ¢y, ¢y, ", c(;—yy are
gone upon its arrival and enter into the service.
Accordingly, c¢; leaves the first node at time a;
+3,. Repeating this argument, it is shown that

¢; never waits at the external queue nor at a
server when the condition are met. It follows that
the i* departure instant is that of ¢;, and that

d;=a;+ ZE s;, independent of the specific win-
P

dows. W
n

e Case : a; <d(,‘_1)+8m* ESj
=1

The objective of the second cese is to prove
that d;=d—),+ s, independent of specific win—
dows. Assume there is a window mechanism
whose gate is in front of the first node and whose
tokens are released in front of the node ». Further
assume that the size of its window is K. For the
same reason as shown the above, a token of the
mechanism becomes available to one of the data
in c;, - at most at time max(0, d(;—)~ (K—1)s,

- 20s;) which, as K>»—1, is no greater than

=r
" . . -
dii—y+sm— 2 s;. As the window mechanism is
=1

generic, it follows that a token of every window
mechanism whose gate is in front of the first
node is available to one of the data in ¢; -+ at

most by time d;_,,+s,— 2,5,
j=1

Now, by the case assumption, ¢; and possibly

many following data are arrived by time d(,_y)

A A2 A7 2 N B7)gEY FUE AT YRS T2e) 9% 24 105

+5,,— 2, 8;, and at least one of these data must
=1

be among c;, ---. Hence, at least one data among
¢, -+, must by then at the first node and ¢;, -,

¢(;-1 have left the first node by time d(;_;—

5:' s;. It follows that the i* departure from the
f=1

n
first node occurs no later than & ;. +s,,— Z;z s;.
~

Repeating this argument, it is readily established
that the i* departure from the node ¢, ¢—1, -,

n, occurs at most at time dq- 3+ S,— j_%l s;,
and hence that d,=d(;,_y+s,. It follows that
d;=d;_+ts,, independent of the specific win-
dows as long as the condition is satisfied. In
addition to the assumption of Property 2, let as-
sume that the queueing discipline at every ex-—
ternal queue is FCFS(first come first service)
and the flow conservation is secured. Then as
long as the window of every window mechanism
is at least as large as the number of nodes span—
ned the mechanism, the end to end delay of every
data is independent of the specific value of the
windows. The above statement can be proved
that the arriving data leave the system in the
same order. Therefore, the departure instants do
not vary and the end to end delay of every data
does not changed. W

Corollary 1 : Let consider a system which can
be divided into the main system and the sub-
system in [Figure 21. Then, as long as the win-
dow of every window mechanism in the sub-
system is at least as large as the number of no-
des spanned by the mechanism, the operation of
the main system is independent of the specific
values of the windows in the subsystem.

Main system

g

[Figure 2] Decomposed system

proof : The proof is closely related with an ap-
plication of Property 2.

In the subsystem, the arrival process needs not
to be independent from the departure process.
The dependency may only be on the departure
instants but not on the identity of the departing
data. Corollary 1 asserts that even if a complex
system does not satisfies the conditions of Pro-
perty 2, its modeling can be simplified if a sub-
system satisfies the conditions. Then, without
loss of accuracy, the performance of the system
can be analyzed assuming arbitrarily large win-
dows in the subsystem. Otherwise, the window

mechanisms in the subsystem can be neglected.

4. Numerical examples

In this section, it is shown that the results of
the preceding section by means of an example.
The example is a data collection system where
large blocks of data are transferred from » pe-
ripherals to a multiprocessor as shown in [Figure
3]. Generally, this kinds of models are applied to
the WAN standards such as X.25 and frame
relay. Due to their sizes, the blocks are first frag—
mented into small identical units, »>1 and then
transmitted. Communication from each periph-
eral to the multiprocessor is used over the dedi-
cated WAN link.

In the multiprocessor, the units of a particular
peripheral are received at the WAN processor by

106

e e e e

a dedicated supervision task. After ensuring that
they have been properly transmitted, the super-
vision task forwards the units to the reassembly
processor. The units are reassembled into data
block with some intermediate formatting and
processing. Each peripheral has a dedicated re-
assembly task which is responsible for the re-
construction of its data blocks. When a block is
completely reconstructed, the reassembly task
is responsible for its transfer to the file server.
At the file server, the block is received by the
file task which writes it to the disk and discards
it.

peripherals

There are no end to end flow control mecha-

nisms, 1.e., from the peripherals to the disk, to
explicitly prevent the peripherals from swarnping
the multiprocessor with data. Instead, several
window mechanisms implicitly regulate the over—
all flow by locally regulating the flow of the
blocks and units in each element. In [Figure 3],
K, is the level 3 flow control mechanism. And
also, K,, K; and K, limit the number of blocks
and units respectively in the peripherals, the re-
assembly processor and the file server. The to-

kens of these mechanisms can be viewed as
buffer.

-~

>)
data block N
> Crie)
» 1 7
[! supervision reassemble partial]
fragment block disk
m{ _ J
transfer
multiprocessor
S 7
o~ — v
Ke) —
K "

[Figure 31 Location of the window mechanisms

The details of the window mechanisms are
given below, To emphasize the distinction be-
tween the flow control at the block and the unit
level, we explicitly associate block and unit to—

kens with the mechanism.

K, : When a block is fragmented, its block token

is given to the last unit to be transferred.
When the transfer of the last unit occurs,
the block token of K, is released.

K, : Each instance limits the number of units

which can be transferred to the processor
before an acknowledgement must hbe re-
ceived. The units must be completely proc-
essed by the processor before they are ac—
knowledged, and that time for acknowl-
edgement message to return is negligible.
K, : Each unit must hold a token of the instance

of Ky corresponding to its peripheral to be

processed at the processor. The unit frees
its token upon leaving the reassembly

Processor.

A4 ARz A e AY 702 F0E Ads 458 Tl 9%

K, ' When a block is completely reassembled

and processed by the file server, all the unit
tokens of K, held by its units are released.

The windows must be specified to determine
the minimal amount of memory for the data that
the processors need. To help in this regard, the
model has been redrawn in [Figure 4] with the
window mechanisms represented in [Figure 1.

Supply

of block transmission

-
1)
i —D
:, fragment transfer
i

A 107

i

To satisfy the requirement of one task per pro-
cessor, it is assumed that the processing asso-
ciated with the transferred task on the periph-
erals is small compared to the processing re-
quired for the fragmented task. The processing
of the transferred task is ignored, and the trans-
ferred task is only considered with respect to the
synchronization that it introduces in the acquis-

ition and in the release of tokens.

.......................

reassemble

x

peripherals

'
'
i
]
'
'
'
'
)
1
1
i

K,,(u token)

[Figure 4] Model for window mechanisms

(Table 1) Simuiation results for window
mechanisms

given infinite
window | window

20 5363 5363
40 61.37 61.37
60 70.08 70.08
80 8.17 .17
100 99.18 99.18

simulation # block LD.

end to end delay
for 1 peripheral

end to end delay

for 3 peripherals 70.17 70.17

For the numerical example, we assume first
that =1, =1 and all processing times are
constant. Property 1 and 2 can be used to de-
termine windows which achieve transparent

operation. It states that K, =1 is sufficient, since

K spans only one processor. For the same rea—

son, K, K; and K, is set to 2. To verify that
the transparent operation is achieved, the system
shown in {Figure 3] is simulated and the param-
eters of the simulations and the outputs are given
in <Table 1>. .
The arrival process is poisson with rate 1/12.5
and the processing time for fragment = 5, data
link = 6, supervision = 7, reassemble = 8 and file
= 10. The parameters are chosen to ensure that
all window mechanisms are frequently activated,
and to reasonably load the system to 50% to 80%.
The outputs are the end to end delays for trans-
ferring several arbitrarily chosen data blocks.
Under transparent operation, the end to end de-
lays should be the same in both systems. The
same systems are simulated but with the arrival
process splits into three peripherals and the

108 o}

average delay should be the same in the systems
with finite and with infinite windows.

(Table 2> simulation results for v = 5 and with
the processing times adjusted so as to
generate the same overall loads

end to end delay
Block 1D. - : . .
given window infinite windows
20 41.23 41.23
40 097 5097
60 64.68 6468
80 75.31 75.31
100 RT3 878

The second example is suggest to compare
with the windows when #=1 and «>1. Each
window could be heuristically chosen to be at
least sufficiently large to allow the controlled el-
ements to fully work locally in parallel and has
a different dynamics. <Table 2> presents the re-
sults of simulations of the system using the same
model of <Table 1>, but with «=5 and with the
processing times adjusted so as to generate the
same overall loads. The processing time is set
to data link = 1.2, supervision = 1.4, reassemble =
1.6 . Clearly, the end to end delays are still in-
dependent of specific windows. The last com-
ment within the context of the example concerns
the impact of the service time distributions. So
far, it has been assumed that all service times
are constant. To see what happens if they are
not, the data collection system which produced
<Table 2> is simulated. The results are sum-
marized in <Table 3>. The first observation is
that the choice of windows made in <Table 2>
does not lead anymore to transparent end to end
delays. However, <Table 3> shows that the de-
lays converge rapidly as the window size are
increased. This suggests that although the vari-

ability of the service times does not impact delay

when window mechanisms regulate the flow, the
impact rapidly becomes negligible as the win-

dows increase.

{Table 3) convergency results

end to end delay
Block 1LD. additional tokens
0 1 2 o
20 60.48 57.48 55.49 5.33
40 99.14 89.11 86.77 86.61
60 106.33 89.70 89.36 89.19
80 1347 90.57 90.07 8.91
100 1786 1058 1033 103.1

5. Conclusion

It has been shown that in a series of nodes
with constant service times, arbitrary combina-
tions of window mechanisms, each applying to
an arbitrary subset of data, can be embedded on
the servers without affecting the departure in-
stants from the system if the windows are at
least as large as the number of nodes spanned.
The result implies that the end to end delay of
every data is independent of the specific win-
dows. Under general non preemptive work con-
serving scheduling, the result implies that the
average end to end delay of data is independent
of the specific windows. As the condition on the
windows is a minimal necessary requirement for
full parallelism, the results show that transparent
operation can be achieved with minimal re-
sources.

With variable service times, the results do not
strictly hold, but transparent operation seems to
be rapidly achieved as the windows are increased
above the minimal requirements. In addition, to

A Az A7 Zhe A drlEe FOE Ads 959 x| o 34 109

increase the windows is not the only means to
achieve full parallelism. This paper suggests that,
although window mechanisms affect internal
dynamics, they have a weak impact on overall
performance when minimal conditions are met.

REFERENCES

[1] Baynat, B. and Dallery, Y., “On product
form approximation techniques for general
closed queueing networks,” Tech Rep. MASI,
1987.

[2] Bertsekas, D. and Gallager, R., Data Net-
works, Prentice-Hall, 1992.

[3] Dallery, Y., “Approximate analysis of gen-
eral open queueing networks with restricted
capacity,” Tech. Rep., LAG, N 87-08, 1987,
revised Feb. 1989.

[4] Fdida, S., Perros, H. and Wilk, A., “Sema-
phore queue: modeling multilayered window
flow mechanmisms,” IEEE Trans. on comm.,
Vol38, No0.3(1990), pp.309-317.

(5] Kant, K., Introduction to computer per-
formance evaluation, McGraw-Hill, New
York, 1992.

[6] Liberropoulos, G. and Dallery, Y., “A unified
framework for pull control mechanism in
multi~stage manufacturing systems,” An-
nals of OR., Vol.93(2000), pp.325-355.

[7] Reiser, M., “A queueing network analysis of
computer communication networks with
window flow control,” IEEE Trans. on
comm., Vol.23(1975), pp.1199-1209.

[8] Reiser, M., “Performance evaluation of data
communication systems,” Proceeding of the
IEEE, Vol.70-2(1982), pp.171-182.

[9] Rhee, Y. and Perros, H., “Analysis of an
open tandem queueing network with pop-
ulation constraint and constant service
times,” European Journal of O.R., Vol.92
(1996), pp.99-111.

(10] Rhee, Y. and Perros, H,, “On the mean wait-
ing time of a population constrained open
tandem queueing network with constant ser—
vice times,” IIE Transaction, Vol.30(1998),
pp.973-979.

[11] Shapiro, G. and Perros, H., “Nested Sliding
window protocols with packet fragmenta-
tion,” IEEE Trans. on comm., Vol41, No.1
(1993), pp.99-109.

[12] Thomasian, A. and Bay, P., “Analysis of
queueing network models with population
size constraints and delayed block custom-
ers,” ACM SIGMETRICS conf., Cambridge,
1984, pp.202-216. .

[13] Varge, G., Chou, W. and Nilsson, A., “Queue-
ing delays on circuits using a sliding win-
dow flow control scheme,” ACM SIGME-
TRICS conf., Minneapolis, 1983, pp.275-281.

