International Journal of Management Science
Vol 10, No 2, November 2004

A Processor Assignment Problem
for ATM Switch Configuration

Junghee Han®

College of Business Administration, Kangwon National University,
Hyoja—2Dong, Chunchon—Shi, Kangwon—Do, 200-701, Korea

Youngho Lee™

Department of Industrial Systems and Information Engineering, Korea University,
Sungbuk—Gu Anam—Dong, Seoul, 136—701, Korea

(Received May 2004 ; Revised Oct. 2004 ; Accepted Oct. 2004)

ABSTRACT

In this paper, we deal with a processor assignment problem that minimizes the total traffic load of an
ATM switch controller by optimally assigning processors to ATM interface units. We develop an
integer programming (IP) model for the problem, and devise an effective tabu search heuristic.
Computational results reveal the efficacy of the proposed tabu search procedure, finding a good
quality solution within 5% of optimality gap.

Keywords: Graph partitioning, Tabu search, ATM switch

1. INTRODUCTION

The processor assignment problem (PAP) seeks to minimize the total traffic
transaction load of an ATM switch controller by optimally assigning processors to
interface units. Figure 1 illustrates the configuration of ATM switch, controller,
interface units and processors. For example, let us suppose that there are eight
processors with STM-1 (155Mbps) interface and an ATM switch supporting two
STM-4 (620Mbps) interface units. Each interface unit multiplexes four STM-1s to
a STM-4, or demultiplexes a STM-4 into four STM-1s. The switch controller, di-
rectly connected to the ATM switch, sends control signal to interface units via

* Corresponding Author, Email: jhhan@kangwon.ac.kr
** Email: yhlee@korea.ac kr

89

90 HAN AND LEE

signaling path such as HDLC (High Data Link Control) bus. When requested to
set up SVC (Switched Virtual Circuit) between two processors, the switch control-
ler sends a signal to an interface unit. However, if two processors are assigned to
different interface units such as the case of processors 1 and 5 in Figure 1, the
switch controller sends two separate signals to the interface units via HDLC bus.
This increases the load of switch controller incurring the congestion in the signal-
ing path. Accordingly, the processor assignment plays a key role in managing the
traffic load of ATM switch controller. ‘

\ STM-4 - /
Processor 1 ——— K\ Processor 5
5 | g
Processor2 —{ & : g Processor 6
= F ATM H Iy
8 Switch] 8
Processor 3 —— S S: Processor 7
= &
Processor 4 —— I - Processor 8
Controller
= gmg
HDLC Bus

Figure 1. An example illustration of processor assignment

The PAP can be found from configuring the processors in the telecommunica-
tion systems such as RNC (Radio Network Controller), a component of WCDMA
(Wideband Code Division Multiple Access) IMT-2000 network. In general, there
are tens of processors connected by one ATM switch module in a RNC. The use of
ATM technology is specified in the WCDMA standards by 3GPP (2004). Since a
RNC covers tens of Node-Bs, equivalent to base stations, the traffic load is usu-
ally very high. Also, considering that at least several thousands of radio links
terminate at a single RNC, the reliability and performance of RNC is important.
And, both the reliability and performance of RNC can be improved by reducing
the load of ATM switch controller while supporting the required system capacity.
In this respect, we consider the PAP that minimizes the transaction load of ATM
switch controller for improving the reliability of RNC.

The PAP can be conceptualized as a graph-partitioning probleni. The sim-
plest form of graph-partitioning problem is to divide a node set into two disjoint

A PROCESSOR ASSIGNMENT PROBLEM FOR ATM SWITCH CONFIGURATION 91

subsets, so called the 2-way péartitioning problem. The 2-way partitioning problem
that maximizes the sum of edge weights inter-connecting the two subsets, re-
ferred to as the max-cut problem, is NP-complete (see Ahuja et al., 1993). Perhaps,
the most popular heuristics for the 2-way partitioning problem are the KL algo-
rithm by Kernighan and Lin (1970) and the simulated annealing (SA) algorithm
by Kirkpatrick et al. (1983). Recently, Kim and Moon (2004) developed a new heu-
ristic, so called the “lock-gain algorithm”, based on the KL algorithm for the 2-
way partitioning problem. According to Kim and Moon (2004), the lock-gain algo-
rithm combined with the genetic algorithm framework outperforms the previously
known best solution for most of the benchmark test problem instances.

For the k-way partitioning problem that divides a node set into & (= 2) dis-
joint subsets, there are several studies on developing meta-heuristic such as ge-
netic algorithm by Bui and Moon (1996), simulated annealing combined with tabu
search by Gil et al. (2002) and so forth. For the k-way partitioning problem, some
distinguished studies on deriving tight lower and upper bounds include the works
by Minoux (1995), by Adil and Ghosh (1999), and by Tu et al. (2000) that are
based on the LP-relaxation, on the Lagrangian—relaxation, and on the eigenspace-
relaxation, respectively. Recently, Myung (2003) presented an intensive survey on
the graph-partitioning problem, which describes various formulations and solu-
tion procedures.

Randall and Abramson (1999) developed a parallel tabu search algorithm.
Meanwhile, Banos et al. (2004) presented a parallel simulated annealing algo-
rithm combined with tabu search, and Vigo and Maniezzo (1997) presented a ge-
netic algorithm combined with tabu search for the processor allocation problem.
They employed genetic algorithm or simulated annealing as a main framework,
whereas tabu list is used only for preventing cycles. Also, Wiangtong et al. (2002)
compared the performance of genetic algorithm, simulated annealing and tabu
search for solving the graph partitioning problem. However, in this paper, we de-
velop an effective tabu search heuristic for solving the processor assignment prob-
lem. The main contribution of this paper is stated as follows. First, we show that
we can obtain promising computational result by focusing on generating elite so-
lutions, instead of focusing on the move evaluation. Second, we develop a new
tabu search framework for finding a good quality solution in determining the op-
timal number of clusters.

The remainder of the paper is organized as follows. Section 2 develops an in-
teger programming (IP) formulation, and investigates the inherent special struc-
ture of the problem. Section 3 prescribes a tabu search heuristic. Section 4 pre-
sents computational results and concludes the paper.

92 HAN AND LEE

2. FORMULATION

To precisely describe the processor assignment problem (PAP), we define N as a
set of processors, K as a set of interface units and E as a set of pairs of traffic de-
mands di (= 0) between processors i and j (> 1) € N, where d;; represents the num-
ber of requests for setting up SVCs between processors i and j (> i) € N. Define S
as the maximum number of processors that are supported by an interface unit.
Also, we define N, — N as a set of identical processors of type m € M, where M is
a set of processor types, and we define r» as the maximum number of processors
of type m € M that can be assigned to an interface unit. Now, we define decision
variables. Let xix = 1 if processor ¢ € N is assigned to interface unit k2 € K, and 0
otherwise. Also, let yi;j = 1 if processors ¢ and j (> i) € N are assigned to different
interface units, and 0 otherwise. Then, we can formulate the PAP as follows.

PAP: Minimize 2 g i Yii

subject to

Trerx Xik=1, Vi e N, 1)
Yij = Xik — Xjk, V(i,))e E, ke K, (2)
Yij 2 Xjk — Xik, V(@,)) e B, k e K, 3)
Yicn %k < B, Vk e K, 4)
YicNm Xik < Tm, VmeM kek, (5)
xir € {0,1}, Vie N, ke K,

yii € {0,1}, v(@,j) e E.

The objective function is to minimize the sum of traffic demand switched
among processors that are assigned to different interface units. Constraints (1)
limit that each processor is assigned to an interface unit. Constraints (2) and (3)
show the logical relationship between variables xiz and y;. Constraints (4) ensure
that the maximum number of processors assigned to each interface unit is 8. Con-
straints (5) indicate that at most rm identical processors of type m € M are as-
signed to a single interface unit. The requirement of constraints (5) is essential in
the multi-processor architecture design for improving the reliability of a system.
For example, suppose that we have three identical processors performing the
same task for load sharing or for the survivability of a system. Also, suppose that

A PROCESSOR ASSIGNMENT PROBLEM FOR ATM SWITCH CONFIGURATION 93

we have assigned all of them to a single interface unit. In this case, if the inter-
face unit fails, there is no way to maintain the survivability of the system.

Remark 1. It is evident that the PAP is NP-hard since, by deleting the con-
straints (5) from the PAP, it reduces to the clustering problem having cardinality
constraints for each cluster, which is NP-hard (Myung, 2003). Also, note that con-
straint (4) forces to use at least [| N|/8 | clusters for finding a feasible solution to
the PAP. Thus, the PAP can be conceptualized as a [| N|/f | -cut problem with
additional constraints (4) and (5), where k-cut problem is to divide a set of nodes
into at least k disjoint subsets while minimizing the sum of edge weights inter-
connecting the subsets. Here, note that there exists an optimal solution to the k-
cut problem dividing a set of nodes to only k disjoint subsets (Myung, 2003). How-
ever, unlike the k-cut problem, we may not find an optimal solution to the PAP by
using only [| N|/8 1 interface units due to the constraints (4) and (5), which is il-
lustrated in the following example. a

Example 1. Suppose that N = {1, 2, 3, 4, 5, 6} and E = {(1,2), (2,3), (2,5), (3,6),
(4,5)} with SVC demands between processors as follows: di2 = 5, d3s = 4, d4s = 2,
d23 = dgs = 1. These input parameters are illustrated in Figure 2(a). In Figure 2(b),
we present an optimal solution for the 2-cut problem of this example, where we
can find an optimal solution with two interface units, i.e., K = {4, B}. That is,
processors 1, 2, 3 and 6 are assigned to interface unit A, and processors 4 and 5
are assigned to interface unit B, which gives an objective value of one. Here, we
see that we cannot find a better solution than the one that presented in Figure
2(b) even if we use more than 2 interface units.

Now, let us consider the foregoing example problem with the additional con-
straints (4) and (5). For this purpose, let # = 3. Also, we consider a single set of
identical processors such as N1 = {1, 3} with r1 = 1. That is, we cannot assign both
processors 1 and 3 to a common interface unit. If K = { A, B}, we have an optimal
solution with the objective value of three by assigning processors 1, 2 and 5 to in-
terface unit A, and processors 3, 4 and 6 to interface unit B, which is illustrated in
Figure 2(c). However, despite that| | N| B 1= 2, if we use three interface units, i.e,
K = {A, B, C}, we obtain an optimal solution with the objective value of two by
assigning processors 1 and 2 to interface unit A, processors 3 and 6 to interface
unit B, and processors 4 and 5 to interface unit C. This is illustrated in Figure
2(d). As seen in this example, due to constraints (4) and (5), we may not find an
optimal solution for the PAP with only [| N|/A] interface units unlike the case of
generic k-cut problem. Thus, in the PAP, we cannot reduce the problem size by

94 HAN AND LEE

letting | K| =[' | N|/gleven if | K| is far greater than[| N|/8]. a

A
i }
3 3 1
4 4 |
2-cut problem
B
{ U — 1 3
H ¥ — 3 | ! i
[1 H i 1
; : : ; :
bl i
(c) optimal solution: w/ constraint (5), (d) optimal solution: w/ constraint (5),
two interface units three interface units

rFigure 2. An example of the problem

3. SOLUTION PROCEDURE

For finding a feasible solution of good quality, we develop a tabu search heuristic.
For detailed information of tabu search, refer to Glover and Laguna (1997). In
developing the tabu search for the problem, we focus on generating and managing
elite solutions and implement a direct method for changing the number of clus-
ters instead of using step-wise moves.

For finding an initial feasible solution, we develop a simple heuristic proce-
dure, stated as follows. Let us begin the processor assignment with | K| interface
units. First, we choose an arbitrary processor type m € M and assign | Nn| iden-
tical processors to min{| Nn|, | K|} interface units in a round-robin manner. Then,
we choose another processor type | (# m) € M at random and assign all the proc-
essors in N; to min{| Nil, | K|} interface units in a round-robin manner. We re-
peat this procedure until all the processors in Um . M Nm are assigned. Then, we

A PROCESSOR ASSIGNMENT PROBLEM FOR ATM SWITCH CONFIGURATION 95

assign all the processors in N —Um ¢ M Nm to min{{ N = Um c M Nul|, | K|} interface
units in a round-robin manner. If we find a feasible assignment, we try to find
another one after reducing the number of interface units | K| by one. We repeat
this procedure until we cannot find a feasible assignment. Then, we choose the
best one among several feasible assignments as an initial solution. Our initial
heuristic procedure is described as follows.

Initialization. Let 7 = | K| and F = &, where F denotes the set of feasible as-

signments.

Step 1. Let M" = M and ¢ = 0, where ¢ is an interface unit index. Here, we assume
that interface unit begins with index 0.

Step 2. Pick an arbitrary processor type m € M" and assign | Nm| identical proc-
essors to min{| Nm|, n} interface units in a round-robin manner begin-
ning with the interface unit of index ¢. Then, let M" =M - {m} and ¢ = {[c
+ (| Nm| mod 1)] mod n}. If we fail to assign all the processors in Nn to
min{| Nm|, i} interface units, go to Step 4. -

Step 3. If M = &, go to Step 2. Otherwise, assign all the processor in N — Unm . u
Nm to min{I|N — Un . Nnl, n} interface units in a round-robin manner
beginning with the interface unit of index ¢, and add the current solution
of processor assignment to F. Then, let 7 = 7- 1 and go to Step 1. If we
fail to assign all the processors in N — Um ¢ Nm to min{| N — Um <y Nul,
7} interface units, go to Step 4.

Step 4. Choose the best assignment in F and set it as an initial solution, and stop.

Next, we develop tabu search heuristic for improving the initial solution. For
this purpose, we define moves that would work as a principal mechanism for im-
proving the incumbent solution, and we develop three phases such as intensifica-
tion phase, normal phase, and diversification phase. Then, we define tabu list for
preventing recent moves from reverse-implementing.

Moves: We define add-move as relocating a processor to a different interface
unit. Also, we define swap-move as exchanging interface unit assignment between
a pair of processors. Our tabu search heuristic begins with the move at the inten-
sification phase, which is described in the following.

Intensification Phase: We improve the incumbent solution by performing
add-moves and swap-moves repeatedly. During the intensification phase, the
move type, i.e., add-move or swap-move, is randomly chosen. Also, in order to re-
duce the computation time, we perform the first move that improves the incum-

96 HAN AND LEE

bent solution. However, if we cannot find any move that improves the incumbent
solution, we switch to the normal phase.

Normal Phase: We consider both add-move and swap-move to find a better
feasible solution without increasing the number of interface units. That is, the
add-move that reduces the total number of interface units is allowed, while the
add-move that increases the total number of interface units is not allowed. The
task of the normal phase is to proceed to a new solution space that would hope-
fully give a chance to improve the current best solution when returned to the
intensification phase. Thus, in the normal phase we do not prevent any move
that increases the objective value. However, this may result in a new feasible
solution that is too far from the current best solution in terms of the objective
value, in which case we may have to consume so much computation time to
catch up with or overcome the current best solution. Thus, we perform the add-
move or the swap-move that provides a new feasible solution without increas-
ing the objective value if possible, and return to the intensification phase. In
this process, swap-move is preferred to add-move. However, if such a move is
not found, we perform Max_N random moves without evaluating the objective
value. In this case, the selection of move type, i.e., add-move or swap-move, is
at random. If we find a new solution, we return to the intensification phase af-
ter updating the set L of feasible solutions. The cardinality of L is limited to
some predetermined value Max_L, and the set L is managed by the first-in
first-out (FIFO) strategy in the normal phase. Here, note that we do not update
the set L in the intensification phase. However, if we fail to find a new solution
during the iterations of Max_N move, we switch to the diversification phase.

Diversification Phase: The task of the diversification phase is to generate a
new feasible solution as the case of normal phase. However, there are some dif-
ferences, which are listed as follows. In the diversification phase,

1) we generate a new feasible solution based on an arbitrary solution in L,

not based on the incumbent solution,

2) we do not perform any add-move that decreases the total number of inter-

face units,

3) we do not evaluate moves in terms of the objective value at all, and

4) we delete the worst solution, not the most aged solution, in L before add-

ing a new solution to L when |L| = Max_L.

The rationale that we seek to find a new feasible solution by operation 1) is
that we fail to enter a new feasible region that is not investigated by sequential

A PROCESSOR ASSIGNMENT PROBLEM FOR ATM SWITCH CONFIGURATION 97

moves from the incumbent solution of the normal phase. Thus, we need to change
the combination of the incumbent solution and tabu lists. That is, by changing the
incumbent solution to some different one in L a new combination of the incum-
bent solution and tabu lists may be constructed, and this may give us opportunity
to overcome the current best solution.

The rationale behind the operation 2) is that we do not know the optimal
number of interface units and that we fail to find a new feasible solution in the
normal phase by moves, except the add-move that increases the total number of
interface units.

The rationale behind the operation 3) is that we fail to find a new feasible so-
lution in the normal phase, and thus it is better to focus only on finding a new
feasible solution. However, this may aggravate the average quality of the solu-
tions in L. In order to compensate the operation 3), we adopt the operational
strategy of 4) in the diversification phase.

Tabu List and Aspiration: There are two types of recency based tabu lists:
one for the add-move and the other for the swap-move, each being denoted by Ta
and T, respectively. That is, both tabu lists Ta and Ts are managed by the FIFO
strategy. Tabu list Ta defines a set of add-moves not to be implemented for some
iterations. Also, tabu list Ts defines a set of swap-moves not being implemented
for some duration. However, tabu lists Ta(or Ts) can be overridden by add-
move(or swap-move) if the move improves the incumbent solution. Due to this
aspiration criteria, we do not examine tabu lists in the intensification phase.

The purpose of incorporating tabu lists into the move evaluation is to prevent
the incumbent solution from returning to the previously visited solution. However,
if we permanently prevent all the moves that were implemented from reverse-
implementing, we may be stalled at some stage. Thus, we need to carefully de-
termine the size of tabu lists and the duration of each element in the tabu lists,
referred to as tabu tenure. In order to find a good combination of the size of tabu
lists and tabu tenure, we perform preliminary experiments, which is described in
the next section.

4. COMPUTATIONAL RESULTS AND CONCLUSION

We have tested both the proposed tabu search heuristic for randomly generated
problem instances. Also, in order to evaluate the performance, we have run the

98 HAN AND LEE

MIP optimization procedure of CPLEX 9.0 (CPLEX, 2004). Both our tabu search
heuristic and the CPLEX MIP optimization procedure were run on a Pentium IV
PC (CPU clock speed = 2.8GHz, RAM = 512MB). For generating test problem in-
stances, we choose the capacity of ATM switch first. In this paper, we consider 8 x
8 STM-4 ATM switch (4.8Gbps) since this is typically used for switching data
streams between processors inside the telecommunication systems such as RNC
in the WCDMA IMT-2000 system, where 8x8 STM-4 indicates that the ATM
switch can support eight STM-4 data streams simultaneously (WCDMA system
architecture group, 2002). This means that | K| = 8 and £ =4 if one interface unit
supports 4 STM-1 data streams for processors. Thus, 8 x 8 STM-4 ATM switch
supports up to 32 processors, each being assigned a single STM-1. Therefore, we
generated | N| (< 32) processors, where we assumed that there are three sets of
identical processors such that (| Nm |, rm) = (3, 2), (4, 2) and (5, 2) for m =1, 2, and
3. Then, we generated | E| undirected pairs of traffic demands between proces-
sors according to the uniform distribution in the range of [1, 5]. In general, esti-
mating the traffic demand between processors may incur complicated traffic en-
gineering analysis for real-world problem. However, we may quite accurately es-
timate the traffic demand between processors in some special cases. For example,
in a mobile telecommunication system, we define several classes of service in
terms of the connection type (circuit or packet) and the data rate, i.e., 12.2Kbps
circuit based voice service and packet based data service supporting up to 64Kbps,
144Kbps, 384Kbps and 2Mbps. Moreover, we can further breakdown each class of
service by call type, i.e., initial incoming call and handover call. For each combi-
nation of service class and call type, the call flow describing the set of tasks and
the sequence of tasks may be different (WCDMA system architecture group, 2002).
For example, the call flow of 12.2Kbps circuit based voice call for initial connec-
tion can be processor 1 — processor 2 — processor 4, while the call flow of 64Kbps
packet based data call for handover can be processor 1 — processor 3 — processor
4. Now, the remaining issue is to estimate the frequency of realizations for each
combination of service class and call type in the phase of commercial service roll-
out. This problem is partially solved by analyzing the traffic log during the trial
period. .

To set the parameters of our tabu search heuristic, we conducted some pre-
liminary experiments. From the preliminary experiments, we learned that Max_N
=|NI|, Max_L =|N|x|K| and |Tal=|Ts|=IN{x|K| is a good combination in
terms of both the computation time and solution quality. Also, we observed that
the tabu tenure of each element in tabu lists 74 and 7% in conjunction with the
size of tabu lists | Tal| and | Ts| significantly influences on the performance of our

A PROCESSOR ASSIGNMENT PROBLEM FOR ATM SWITCH CONFIGURATION 99

tabu search heuristic. If tabu tenure is too long, solution quality tends to be low.
On the other hand, we obtained high quality solutions with small variance when
the tabu tenure is set to a small value as long as it is not too small, i.e., 1 or 2.
Also, we observed the recurrence of consecutive moves that were considered as
tabu when the tabu tenure for all tabu moves is set to a common value. Thus, we
have set the tabu tenure for each element of tabu lists to some integer value being
generated by the uniform distribution in the range of [| N|/2, | N|].

In Tables 1, 2 and 3, we present some computational results, where “LP” in-
dicates the LP-relaxation lower bound, “CPLEX” indicates the upper bound ob-
tained by CPLEX MIP optimization procedure, “Tabu” indicates the upper bound
obtained by the proposed tabu search heuristic, and “GAP” indicates the percent-
age gap of “Tabu” upper bound compared to “CPLEX” upper bound. Also,
“CPLEX_T” indicates the CPLEX run time, measured in seconds. Asterisk
mark(*) in “CPLEX_T” indicates that we interrupted the CPLEX MIP optimiza-
tion procedure at that time. Thus, “CPLEX” upper bound is equal to an optimal
objective value if the corresponding “CPLEX_T” is presented with no asterisk
mark. CPU time for tabu search heuristic is limited to 60 seconds for all the test
problem instances. As we see from the computational results of Tables 1, 2 and 3,
the CPLEX found an optimal solution for 19 test problems out of 60 within 10,000
seconds. On the other hand, our tabu search heuristic found a feasible solution
within 5% of optimality gap for 53 test problems. Also, note that the largest gap of
our tabu search heuristic does not exceed 5.8%. For 22 test problems we observe
that the proposed tabu search heuristic generates a good feasible solution com-
pared with the CPLEX run up to 10,000 seconds.

Table 1. Computational results: (| M, |K1,) = (15, 8, 4).

|E| =40 |E| =50
No. | LP | CPLEX | Tabu | Gap | CPLEX_T | No. | LP | CPLEX | Tabu | Gap | CPLEX_T

1 1 59 61 3.4% 1,204 1 3 85 85 0% 10,000"
2 2 76 78 2.6% 5,433 2 4 100 101 1% 10,000"
3 1 69 73 5.8% 8,893 3 3 77 81 5.1% 3,263

4 2 72 72 0% 4,150 4 3 77 77 0% 9,487

5 2 61 61 0% 460 5 3 92 92 0% 10,000"
6 1 66 68 0% 6,917 6 2 93 97 4.3% 10,000"
7 3 65 67 3.1% 3,368 7 3 85 85 O% 10,000"
8 3 54 55 1.9% 1,523 8 1 91 96 5.5% 10,000
9 2 74 75 1.4% 5,682 9 3 89 89 0% 10,000"

100 HAN AND LEE

0] 2| 65 | 66 [1s%]| 1450 J10] 2] 88 | 84 | 10%
Table 2. Computational results (IM, |kl, g) = (20, 8, 4).

6,089

{E| =40 |E} =50
No. | LP | CPLEX | Tabu | Gap | CPLEX_T | No. | LP | CPLEX | Tabu Gap | CPLEX_T
1|1 52 55 |57% | 10000 | 1 | 1 77 81 5.2% | 10,000"
2 | 2 59 62 | 51% | 8083 2 | 3 80 80 0% | 10,000"
3 | o 65 67 | 31% | 10,0000 | 3 | 1 79 81 2.5% | 7,310
4 | 2 65 67 | 31% | 100000 | 4 | 1 84 86 2.4% | 10,000*
5 | 3 57 57 0% 499 5 | 1 79 79 0% | 10,000
6 3 56 56 0% 9,399 6 1 88 88 0% 10,000"
7 |1 49 51 | 4.1% | 10,0000 | 7 | 2 71 71 0% | 10,000
8 | 1 58 58 0% | 10,0000 | 8 | 1 83 83 0% | 10,000
9 | o 58 58 0% | 100000 | 9 | 3 85 88 3.5% | 10,000
10 | 1 59 61 | 34% | 1,720 10| 0 68 70 2.9% | 10,000"
Table 3. Computational results: (IM, |K1,) = (25, 8, 4).
|E| =40 |E| =50

No. | LP | CPLEX | Tabu | Gap | CPLEX_T | No. | LP | CPLEX | Tabu | Gap | CPLEX_T
11 53 53 0% | 100000 | 1 | 1 72 71 | -1.4% | 10,000
2 0 45 46 2.2% 10,000 2 0 69 71 2.9% 10,000"
3 0 47 49 4.3% 7,967 3 1 78 80 2.6% 10,0006
4 |1 53 54 | 1.9% | 10,000 | 4 | 0 61 62 1.6% | 10,000"
5 |0 59 62 | 51% | 100000 | 5 | 1 65 67 3.1% | 10,000
6 |1 44 46 | 4.5% | 10,000 | 6 | 1 75 76 1.3% | 10,000"
7 2 53 55 3.8% 10,000" 7 2 68 70 2.9% 10,000"
8 2 50 51 2% 10,000" 8 1 72 72 0% 10,000"
9 |1 41 41 0% | 10,0000 | 9 | 1 74 74 0% | 10,000
10 |1 51 53 | 3.9% | 10,000 | 10 | 1 83 83 0% | 10,000"

In this paper, we proposed a graph-partitioning problem with cardinality
constraints. Also, we developed an effective tabu search heuristic to solve the
processor assignment problem that minimizes the total traffic load of an ATM
switch controller by optimally assigning processors to ATM interface units. Com-
putational results show that our tabu search heuristic works quite well usually
finding a good quality solution within 5% of optimality gap. Further work in-
cludes investigating the polyhedral structure of the proposed graph-partitioning

A PROCESSOR ASSIGNMENT PROBLEM FOR ATM SWITCH CONFIGURATION 101

problem, and developing a branch-and-cut algorithm.

REFERENCES

(1]
2]

(3]

[4]

[5]

[6]

(7]
8]
[9]
[10]

[11]

[12]

(13]

[14]

[15]

CPLEX, Using the CPLEX Callable Library, Version 9.0, ILOG, Inc., 2004.
Adil, G. K. and J. B. Ghosh, “Analysis of Lagrangian lower bounds for a
graph partitioning problem,” Operations Research 47 (1999), 785-788.
Ahuja, R. K., T. L. Magnanti, and J. B. Orlin, Network Flows, Prentice Hall,
New Jersey, 1993.

Banos, R., C. Gil, J. Ortega and F. G. Montoya, “A parallel multilevel
metatheuristic for graph partitioning,” Journal of Heuristics 10 (2004), 315-
336.)
Bui, T. N. and B. R. Moon, “Genetic algorithm and graph partitioning,”
IEEE Transaction on Computers 45(1996), 841-855.

Gil, C., J. Ortega, M. G. Montoya, and R. Banos, “A mixed heuristic for cir-
cuit partitioning,” Computational Optimization and Applications 23(2002),
321-340.

Glover, F. and M. Laguna, Tabu Search, Kluwer Academic Publishers, Bos-
ton, 1997.

Kernighan, B. and S. Lin, “An efficient heuristic procedure for partitioning
graphs,” Bell Systems Technical Journal 49 (1970), 291-307.

Kim, Y. H. and B. R. Moon, “Lock-gain based graph partitioning,” Journal
of Heuristics 10 (2004), 37-57.

Kirkpatrick, S., C. D. Gelatt Jr. and M. P. Vecchi, “Optimization by simu-
lated annealing,” Science 220 (1983), 671-680.

Minoux, M., “On some large-scale L P relaxations for the graph partitioning
problem and their optimal solutions,” Annals of Operations Research 58
(1995), 143-154.

Myung, Y. S, “The graph partition problem,” Journal of the Korean Opera-
tions Research and Management Science Society 28 (2003), 131-143.
Randall, M. and A. Abramson, “A parallel tabu search algorithm for combi-
natorial optimization problems,” In Proceedings of 6 Australasian Confer-
ence on Parallel and Real Time Systems, Springer-Verlag, (1999), 68-79.

Tu, C. C., C. K. Shieh, and H. Cheng, “Algorithms for graph partitioning
problems by means of eigenspace relaxations,” European Journal of Opera-
tional Research 123 (2000), 86-104.

Vigo, D. and V. Maniezzo, “A genetic/tabu thresholding hybrid algorithm for

102 HAN AND LEE

the process allocation problem,” Journal of Heuristic 3(1997), 91-110.

[16] WCDMA system architecture group, Technical description of WCDMA RNC
system, LG Electronics, Inc., 2002.

[17] Wiangtong, T., P. Cheung and W. Luk, “Comparing three heuristic search
methods for functional partitioning in hardware-software codesign,” Design
Automation for Embedded Systems 6 (2002), 425-449.

[18] 3GPP, http://www.3gpp.org/ftp/Specs/html-info/25-series.htm, 2004,

