항목 속성과 평가 정보를 이용한 혼합 추천 방법

A Hybrid Recommendation Method based on Attributes of Items and Ratings

  • 김병만 (금오공과대학교 컴퓨터공학과) ;
  • 이경 (금오공과대학교 컴퓨터공학과)
  • 발행 : 2004.12.01

초록

추천 시스템은 일상의 정보를 필터링 해주는 웹 지능화 기술 중의 하나이다. 현재까지 협력기반 (사회기반) 추천 시스템, 내용기반 추천시스템과 이들의 장점을 혼합한 추천시스템들이 개발되어 왔다. 본 논문에서는 클러스터링 기법을 항목기반 협력필터링 틀에 적용한 일명 ICHM이라 불리는 새로운 형태의 혼합 추천 시스템을 소개한다. 이 방법은 항목의 내용 정보를 협력필터링 틀 안에 통합시킴으로써 평가 데이타의 희박성을 줄일 수 있을 뿐만 아니라 새로운 항목 추천 시 발생하는 문제점을 해결할 수 있다. ICHM 방법의 특성 및 성능을 평가하기 위하여 MovieLense 데이타를 이용한 다양한 실험을 하였다. 실험 결과, ICHM 방법이 항목기반 협력 필터링의 예측 질을 향상시킬 뿐만 아니라 새로운 항목 추천 시에도 아주 유용함을 확인할 수 있었다.

Recommender system is a kind of web intelligence techniques to make a daily information filtering for people. Researchers have developed collaborative recommenders (social recommenders), content-based recommenders, and some hybrid systems. In this paper, we introduce a new hybrid recommender method - ICHM where clustering techniques have been applied to the item-based collaborative filtering framework. It provides a way to integrate the content information into the collaborative filtering, which contributes to not only reducing the sparsity of data set but also solving the cold start problem. Extensive experiments have been conducted on MovieLense data to analyze the characteristics of our technique. The results show that our approach contributes to the improvement of prediction quality of the item-based collaborative filtering, especially for the cold start problem.

키워드

참고문헌

  1. P.G. Anick, J.D. Brennan, R.A. Flynn, D.R. Hanssen, B. Alvey and J.M. Robbins, 'A Direct Manipulation Interface for Boolean Information Retrieval via Natural Language Query,' Proc. of ACM-SIGIR Conf., pp.135-150, 1990 https://doi.org/10.1145/96749.98015
  2. J.H. Lee, M.H Kim. and Y.H. Lee, 'Ranking documents in thesaurus-based Boolean retrieval systems,' Information Processing and Management, Vol.30, No.1, pp.79-91, 1993 https://doi.org/10.1016/0306-4573(94)90025-6
  3. J. Verhoeff, W. Goffman and J. Belzer, 'Inefficiency of the use of the boolean functions for information retrieval systems,' Communications of the ACM, Vol.4, pp.557-558, 1961 https://doi.org/10.1145/366853.366861
  4. G. Salton, and C. Buckley, 'Term weighting approaches in automatic text retrieval,' Information Processing and Management, Vol.24, No.5, pp. 513-523, 1988 https://doi.org/10.1016/0306-4573(88)90021-0
  5. S.E. Robertson and K. Sparck Jones, 'Relevance weighting of search terms,' Journal of the American Society for Information Science, Vol.27, No.3, pp.129-146, 1976
  6. M. Kim and V.V. Raghavan, 'Adaptive concept-based retrieval using a neural network,' Proc. Of ACM-SIGIR Workshop on Mathematical/Formal Methods in IR, 2000
  7. Y. Ogawa, T. Morita and K. Kobayashi, 'A fuzzy document retrieval system using the keyword connection matrix and a learning method,' Fuzzy sets and Systems, Vol.39, pp.163-179, 1991 https://doi.org/10.1016/0165-0114(91)90210-H
  8. Douglas B. Terry, 'A tour through tapestry,' Proc. of the ACM Conference on Organizational Computing Systems (COOCS), pp. 21-30, 1993 https://doi.org/10.1145/168555.168558
  9. Donna Harman., 'Overview of the third Text Retrieval Conference (TREC-3),' D. K. Harman, editor, Overview of the Third Text Retrieval Conference (TREC-3), pp. 1-19, 1994
  10. Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P. and Riedl, J., 'GroupLens: An open architecture for collaborative filtering of Netnews,' Proc. of ACM Conf. on Computer-Supported Cooperative Work, pp.175-186, 1994
  11. Upendra S. and Patti M,. 'Social Information Filtering: Algorithms for Automating 'Word of Mouth',' Proc. of ACM CHI'95 Conference on Human Factors in Computing Systems, pp. 210-217, 1995 https://doi.org/10.1145/223904.223931
  12. http://www.cs.umn.edu/research/GroupLens/
  13. D. Gupta, M. Digiovanni, H. Narita, and K. Goldberg, 'Jester 2.0: A New Linear-Time Collaborative Filtering Algorithm Applied to Jokes,' Proc. of Workshop on Recommender Systems: Algorithms and Evaluation, Aug. 1999
  14. Hauver, D. B. and French,J. C, 'Flycasting: Using Collaborative Filtering to Generate a Play list for Online Radio,' Proc. of Int. Conf. on Web Delivery of Music, 2001
  15. M. Claypool, A. Gokhale, T. Mirana, P. Murnikv, D. Netes and M. Sartin, 'Combing Content-Based and Collaborative Filters in an Online Newspaper,' Proc. of Workshop on Recommender Systems - Implementation and Evaluation, 1999
  16. Wasfi, A. M. A., 'Collecting User Access Patterns for Building user Profiles and Collaborative Filtering,' Proc. of Int. Conf. on Intelligent User Interfaces, pp.57-64, 1999
  17. Delgado, J., Ishii, N. and Ura, T., 'Content-based Collaborative Information Filtering: Actively Learning to Classify and Recommend Documents,' Proc. of Second Int. Workshop, CIA'98, pp. 206-215, 1998
  18. M. Balabanovic and Y. Shoham, 'Fab : Content-based collaborative recommendation,' CACM, Vol.40, No.3, 1997
  19. N. Good, J.B. Schafer, J.A. Konstan, A. Borchers, B. Sarwar, J. Herlocker and J. Riedl, 'Combininig Collaborative Filtering with Personal Agents for Better Recommendations,' Proc. of the AAAI-99, 1999
  20. Popescul, A., Ungar, L. H., Pennock, D. M. and Lawrence, S., 'Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments,' Proc. of Conf. on UAI, 2001
  21. C. Basu, H. Hirsh, and W. Cohen, 'Recommendation as Classification : Using Social and Content-Based Information in recommendation,' Proc. of AAAI, 1998
  22. 김병만, 이경, 김시관, 임은기, 김주연, '추천시스템을 위한 내용기반 필터링과 협력필터링의 새로운 결합 기법', 한국정보과학회논문지:소프트웨어및응용, 31권 3호, pp.332-342, 2004
  23. Q. Li and B. M. Kim, 'Constructing User Profiles for Collaborative Recommender System,' Advanced Web Technologies and Applications: 6th Asia-Pacific Web Conference, J. X. Yu, X. Lin, H. Lu and Y. Zhang, eds., LNCS 3007, Springer-Verlag, pp. 100-110, April 2004
  24. Sarwar, B. M., Karypis, G., Konstan, J. A. and Riedl, J., 'Item-based Collaborative Filtering Recommendation Algorithms,' Proc. of the Tenth Int. WWW Conf. 2001, pp. 285-295, 2001 https://doi.org/10.1145/371920.372071
  25. Q. Li and B. M. Kim, 'An Approach for Combining Content-based and Collaborative Filters,' Proc. of the Sixth International Workshop on Information Retrieval with Asian Languages, pp. 17-24, 2003 https://doi.org/10.3115/1118935.1118938
  26. Q. Li and B. M. Kim, 'Clustering Approach for Hybrid Recommender System,' Proc. of the 2003 IEEE/WIC International Conference on Web Intelligence (WI 2003), pp. 33-38, 2003 https://doi.org/10.1109/WI.2003.1241167
  27. J. Han and M. Kamber, Data mining: Concepts and Techniques, New York: Morgan-Kaufman, 2000
  28. R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classfication, Wiley-Interscience Publication, New York, pp.528-530, 2000
  29. M. O'Connor and J. Herlocker, 'Clustering items for collaborative filtering,' tech. rep., University of Minnesota, department of Computer Science, Minneapolis, USA, 2000
  30. Sonny Han Seng Chee, Jiawei Han and Ke Wang, 'RecTree: An Efficient Collaborative Filtering Method,' Lecture Notes in Computer Science, Vol. 2114, pp.141-151, 2001