초록
분산 환경에서 디지털 라이브러리 구축시 기존의 단일 에이전트를 이용한 클라이언트/서버 방식으로 시스템을 구축할 경우, 일차원적인 자료검색으로 인해 검색결과의 관련성이 없고, 검색 견과에 대한 사용자의 성향이 반영되지 않으며, 클라이언트가 서버에 접속할 때마다 인증을 받아야 하므로 다수의 서버 접근시 문서 처리 효율이 낮고 사용하기 불편하다는 문제점을 갖는다. 따라서 본 논문에서는 이의 해결을 위해 기존의 멀티 에이전트 플랫폼인 DECAF와 표준안으로 제시되는 모바일 ORB인 Voyager를 응용해 새로운 모바일 환경에 적합한 멀티 에이전트 플랫폼을 개발 제안하였고, 이를 이용한 사용자 기반의 디지털 라이브러리 시스템(PDS)을 구축하였다. 이러한 접근방법은 국내외적으로 처음 시도되는 연구이다. 새로운 플렛폼은 관련정보의 검색문제를 위해 신경회로망을 이용한 문서분류를 통해 관련 문서의 검색을 세분화시킴으로써 검색결과의 관련성을 높였고. 사용자 성향을 반영하기 위해 모듈화된 클라이언트를 구성하여 신경회로망을 이용함으로써 사용자의 성장과 탐색 결과를 최적화 시켰으며, 네트워크 문제를 위해 멀티에이전트 플랫폼과 모바일 클래스를 이용한 모바일 기능을 개발하였다. 또한 모바일 시스템과 멀티에이전트 시스템을 적절히 결합하고 멀티 에이전트 사이의 협상 알고리즘과 스케줄링 방법을 개발함으로써 제안한 플랫폼이 효율적으로 동작하도록 구성하였다. 시뮬레이션한 결과, 분산환경에서 모바일 서버의 개수와 에이전트의 개수가 늘어날수록 PDS는 기존의 디지털 라이브러리보다는 탐색시간이 훨씬 줄어들었고 결과에 대한 사용자 만족도도 기존 C/S 방식에 비해 약 4배정도 향상됨을 알 수 있었다
When digital libraries are developed by the traditional client/sever system using a single agent on the distributed environment, several problems occur. First, as the search method is one dimensional, the search results have little relationship to each other. Second, the results do not reflect the user's preference. Third, whenever a client connects to the server, users have to receive the certification. Therefore, the retrieval of documents is less efficient causing dissatisfaction with the system. I propose a new platform of mobile multiagents for a personal digital library to overcome these problems. To develop this new platform I combine the existing DECAF multiagents platform with the Voyager mobile ORB and propose a new negotiation algorithm and scheduling algorithm. Although there has been some research for a personal digital library, I believe there have been few studies on their integration and systemization. For searches of related information, the proposed platform could increase the relationship of search results by subdividing the related documents, which are classified by a supervised neural network. For the user's preference, as some modular clients are applied to a neural network, the search results are optimized. By combining a mobile and multiagents platform a new mobile, multiagents platform is developed in order to decrease a network burden. Furthermore, a new negotiation algorithm and a scheduling algorithm are activated for the effectiveness of PDS. The results of the simulation demonstrate that as the number of servers and agents are increased, the search time for PDS decreases while the degree of the user's satisfaction is four times greater than with the C/S model.