DOI QR코드

DOI QR Code

Fabrication of gratings in Planar Lightwave Circuits for External Cavity Laser

외부 공진기 레이저 구현을 위한 평면도파로 격자 제작

  • Lim, Jong-Hoon (School of Information and Communications Engineering, SungKyunKwan University) ;
  • Lim, Gun (School of Information and Communications Engineering, SungKyunKwan University) ;
  • Lee, Kyung-Shik (School of Information and Communications Engineering, SungKyunKwan University) ;
  • Song, Jeong-Hwan (Network Research Team, Telecomm R&D Center, Samsung Electronics) ;
  • Cho, Jae-Geol (Network Research Team, Telecomm R&D Center, Samsung Electronics) ;
  • Jung, Sun-Tae (Network Research Team, Telecomm R&D Center, Samsung Electronics) ;
  • Oh, Yun-Kyung (Network Research Team, Telecomm R&D Center, Samsung Electronics)
  • 임종훈 (성균관대학교 정보통신공학부 광통신연구실) ;
  • 임군 (성균관대학교 정보통신공학부 광통신연구실) ;
  • 이경식 (성균관대학교 정보통신공학부 광통신연구실) ;
  • 송정환 (삼성전자 정보통신총괄 통신연구소 광소자 Lab) ;
  • 조재걸 (삼성전자 정보통신총괄 통신연구소 광소자 Lab) ;
  • 정선태 (삼성전자 정보통신총괄 통신연구소 광소자 Lab) ;
  • 오윤경 (삼성전자 정보통신총괄 통신연구소 광소자 Lab)
  • Published : 2004.12.01

Abstract

Bragg gratings were fabricated in Ge-doped silica planar lightwave circuits (PLC) for different writing conditions to study the growth characteristics. The refractive index modulation of the gratings grew in the PLC with total fluence F according to the power law $\Delta$n=A $F^{B}$. The characteristics of the PLC gratings formed for external cavity lasers match closely to those predicted by the power law. The oscillation spectra of the FP-LD with a Bragg grating grown in the PLC waveguide were also presented.d.

평면도파로 (Planar Lightwave Circuits)를 수소처리한 후 격자를 제작하였다. 성장특성 분석 결과 격자는 거듭제곱식 (power law)에 따라서 성장되는 것을 알 수 있었다. 격자의 성장특성을 이용하여 외부 공진기 레이저용 평면도파로 격자를 설계하고 제작한 결과 예상치와 거의 일치하는 격자특성을 얻을 수 있었고, 제작된 격자로 구현된 외부 공진기 레이저에서 ∼40dB의 인접모드억압비(side mode suppression ratio)를 갖는 단일모드 발진을 관측할 수 있었다.

Keywords

References

  1. H. Takahashi, 'Planar lightwave circuit devices for optical communication: present and future,' Proceeding of SPIE, Active and Passive Optical Components for WDM Communication III. vol. 5246, pp. 520-531, 2003 https://doi.org/10.1117/12.512904
  2. T. Miya, 'Silica-based planar lightwave circuits: passive and thermally active devices,' IEEE J. Selected Topics In Quantum Electron., vol. 6, no. 1, pp. 38-45, 2000 https://doi.org/10.1109/2944.826871
  3. J-I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima, 'FiberBragg- grating external cavity semiconductor Iaser(FGL) module for DWDM transmission,' J. Lightwave Technol., vol. 21, no. 9, pp. 2002-2009, 2003 https://doi.org/10.1109/JLT.2003.815498
  4. T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, 'An uncooled external cavity diode laser for coarse-WDM access network systems,' IEEE Photon. Technol. Lett., vol. 14, no. 7, pp. 1001-1003, 2002 https://doi.org/10.1109/LPT.2002.1012412
  5. T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, M. Ishii, Y. Inoue, and Y. Tohmori, '100-GHz spacing eight-channel light source integrated with gratings and LDs on PLC platform,' IEEE Photon. Technol. Lett., vol. 14, no. 9, pp. 1348-1350, 2002 https://doi.org/10.1109/LPT.2002.801058
  6. T. Tanaka, Y. Hibino, T. Hashimoto, R. Kasahara, Y. Inoue, A. Himeno, M. Itoh, M. Abe, H. Oohashi, and Y. Tohmori, 'PLC-type hybrid external cavity laser integrated with front-monitor photodiode on Si platform,' Electron. Lett., vol. 37, no. 2, pp. 95-96, 2001 https://doi.org/10.1049/el:20010052
  7. F. Le Gall, S. Mottet, N. Devoldere, J. Landreau, 'External cavity laser for DWDM access network,' in European Conf. on Optical Communication '98, Madrid, Spain, pp. 285-286, 1998 https://doi.org/10.1109/ECOC.1998.732542
  8. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, 'High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in $GeO_{2}$ doped optical fibers,' Electron. Lett., vol. 29, no. 13, pp. 1191-1193, 1993 https://doi.org/10.1049/el:19930796
  9. J. Crank, The Mathematics of Diffusion, (Oxford University Press, London, England, 1975)
  10. R. Kashyap, Fiber Bragg Grating, (Academic Press, San Diego, USA, 1999), pp. 409-441
  11. T. Erdogan, 'Fiber Grating Spectra,' J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294, 1997 https://doi.org/10.1109/50.618322
  12. H. Patrick, and S. L. Gilbert, 'Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber,' Opt. Lett., vol. 18, no. 18, pp. 1484-1486, 1993 https://doi.org/10.1364/OL.18.001484
  13. V.Grubsky A. Skorucak, D. S. Starodubov, and J. Feinberg, 'Fabrication of long-period fiber gratings with no harmonics,' IEEE Photon. Technol. Lett., vol. 11, no. 1, pp. 87-89, 1999 https://doi.org/10.1109/68.736403