The Discharge Characteristic Analysis of a Ramp Reset Waveform Using a 2-Dimensional Numerical Simulation in AC PDP

AC PDP에서 2차원 수치해석을 이용한 Ramp Reset 구동파형에 따른 방전 특성 분석

  • 박석재 (인하대 공대 전기공학과) ;
  • 최훈영 (인하대 공대 전기공학과) ;
  • 서정현 (인천대 공대 전기공학과) ;
  • 이석현 (인하대 공대 전기공학과)
  • Published : 2004.12.01

Abstract

The discharge characteristics of a ramp reset waveform in the alternating current plasma display panel(ac PDP) were studied using a 2-dimensional numerical simulation. We analyzed the wall charge variation during the reset discharge, address discharge and sustain discharge adopting a ramp reset waveform. Then we investigated the principal parameters for a successful discharge. In this paper, we suggest a new parameter, printing particles' density and its effects on the stability of the ramp discharge. The maximum current flows of the three electrodes during the ramp reset period were decreased with the increase in the priming particles's density which was explained with the wall charge characteristics and the current flow characteristics obtained by a 2-D simulation.

Keywords

References

  1. K. Sakita et al, 'Analysis of a weak Discharge of Ramp-Wave Driving to Control Wall voltage and Luminance in AC-PDPs', SID 00 DIgest, p.110-113, 2000
  2. L.F.Weber, 'Plasma Panel Exhibiting Enhanced Contrast', U.S. 5,745,086, 1998
  3. Joong Kyun Kim, Jin Ho Yang, Woo Joon Chung, and Ki Woon Whang, 'The Addressing Characteristics of an Alternation Current Plasma Display Panel Adopting a Ramping Reset Pulse', IEEE Trans. Electron Devices, vol 48, No.8, p. 1556, 2001 https://doi.org/10.1109/16.936560
  4. Joong Kyun Kim, Woo Joon Chung, Jeong Hyun Seo and Ki Woon Whang, 'The 2-dimensional Discharge Cell Simulation for the Analysis of the Reset and Addressing of an Alternating Current Plasma Display Panel', Journal of Information Display, vol 2, No.1, 2001
  5. J. Meunier, Ph. Belenguer, and J.P. Boeuf, 'Numerical model of an an plasma display panel cell in neon-xenon mixtures', J. Appl. Phys.78, p731, 1995 https://doi.org/10.1063/1.360684
  6. C. Punset, S. Cany and J.P. Boeuf, 'Addressing and sustaining in alternating current coplanar plasma display panels', J. Appl. Phys. 86, p. 124, 1999 https://doi.org/10.1063/1.370709
  7. A. A. Kulikovsky, 'A More Accurate Scharfetter-Gummel Algorithm of Electron Transport for Semiconductor and Gas Discharge Simulation', J. Comput. Phys. 119 p149, 1995 https://doi.org/10.1006/jcph.1995.1123
  8. Klaus A. Hoffmann and Steve T. Chiang, Computaional Fluid Dynamics For Engineers-Volume I, A Publication of Engineering Education $Systrm^{TM}$, 1993
  9. Culbert B. Laney, Computional Gasdynamics, CAMBRIDGE UNIVERSITY PRESS, 1998
  10. William H. Press, Brian P. Flannery and Saul A. Teukosky, Numerical Recipes, CAMBRIDGE UNIVERSITY PRESS, 1989
  11. L.F.Weber, 'Plasma Display Device Challenges', ASIA DISPLAY 98, p. 15-27, 1998
  12. L. A. Levin, S. E. Moody, E. L. Klosterman, R. E. Center, and J. J. Ewing, IEEE J. Quantum Electron. QE-17, 2282, 1981 https://doi.org/10.1109/JQE.1981.1070708
  13. H. S. Oskham and V. R. Mittelstad, Phys. Rev. 32, 1445, 1963 https://doi.org/10.1103/PhysRev.132.1445
  14. J. Galy, K. Aouame, A. Birot, H. Brunet, and P. Millet, J. Phys. B 26, 447, 1993 https://doi.org/10.1088/0953-4075/26/3/018
  15. Y. Salamero, A, Birot, J. Galy, and P. Millet, J. Chem. Phys. 80, 4774, 1984 https://doi.org/10.1063/1.446550
  16. Gen. Inoue, J. K. Ku, and D. W. Setser, J. Chem. Phys. 81, 5760, 1984 https://doi.org/10.1063/1.447628
  17. W. J. Alford, J. Chem. Phys. 96, 4330, 1992 https://doi.org/10.1063/1.462862
  18. R. Brodmann and G. Zimmerer, J. Phys. B 10, 3395, 1977 https://doi.org/10.1088/0022-3700/10/17/014
  19. J. W. Keto, R. E. Gleason, J. D. Bornifield, G. K. Walters, and F. K. Soley, Chem. Phys. Lett. 42, 125, 1976 https://doi.org/10.1016/0009-2614(76)80566-0
  20. G. Thornton, E. D. Poliakoff, E. Matthias, S. H. Southworth, R. A. Rosenberg, M. G. White, and D. A. Shirley, J. Chem. Phys. 71, 133, 1976 https://doi.org/10.1063/1.438112