A Relevance Feedback Method Using Threshold Value and Pre-Fetching

경계 값과 pre-fetching을 이용한 적합성 피드백 기법

  • 박민수 ((주)엑사텔레콤) ;
  • 황병연 (가톨릭대학교 컴퓨터정보공학부)
  • Published : 2004.09.01

Abstract

Recently, even if a lot of visual feature representations have been studied and systems have been built, there is a limit to existing content-based image retrieval mechanism in its availability. One of the limits is the gap between a user's high-level concepts and a system's low-level features. And human beings' subjectivity in perceiving similarity is excluded. Therefore, correct visual information delivery and a method that can retrieve the data efficiently are required. Relevance feedback can increase the efficiency of image retrieval because it responds of a user's information needs in multimedia retrieval. This paper proposes an efficient CBIR introducing positive and negative relevance feedback with threshold value and pre-fetching to improve the performance of conventional relevance feedback mechanisms. With this Proposed feedback strategy, we implement an image retrieval system that improves the conventional retrieval system.

최근 다양한 시각적 특징 표현들이 연구되고 많은 시스템들이 만들어졌음에도 불구하고 기존의 내용기반 영상 검색 접근 방식들은 유음성에서 한계가 있었다. 특히 사용자의 고 수준개념들과 시스템의 저 수준 특징 사이의 차이와 시각적 내용에 대한 인간의 유사성 인식의 주관성이 배제되는 한계를 지니고 있었다. 따라서 영상정보의 정확한 데이터 전달과 이를 효율적으로 검색하기 위한 방법이 요구된다. 적합성 피드백은 멀티미디어 검색에 있어 사용자가 요구하는 정보를 반영할 수 있어 영상의 검색 효율을 높일 수 있다. 본 논문에서는 기존의 적합성 피드백 기법의 성능을 향상시키기 위해 경계 값과 pre-fetching을 이용하여 긍정적 피드백과 부정적 피드백을 혼합한 개선된 영상 검색 기법을 제안한다. 또한, 제안된 피드백 기법을 이용하여 기존의 검색시스템을 보다 발전시킨 영상 검색 시스템을 구현한다.

Keywords