DOI QR코드

DOI QR Code

Nonlinear Vibration Phenomenon for the Slender Rectangular Cantilever Beam

얇은 직사각형 외팔보의 비선형 진동현상

  • Published : 2004.12.01

Abstract

The non-linear responses of a slender rectangular cantilever beam subjected to lateral harmonic base-excitation are investigated by the 2-channel FFT analyzer. Both linear and nonlinear behaviors of the cantilever beam are compared with each other. Bending mode, torsional mode, and transverse mode are coupled in such a way that the energy transfer between them are observed. Especially, superharmonic, subharmonic, and chaotic motions which result from the unstable inertia terms in the transverse mode are analyzed by the FFT analyzer The aim is to give the explanations of the route to chaos, i.e., harmonic motion \longrightarrow superharmonic motion \longrightarrow subharmonic motion \longrightarrow chaos.

Keywords

References

  1. Pai, P. F. and Nayfeh, A. H., 1990, 'Nonlinear Non-Planar Oscillations of a Cantilever Beam under Lateral Base Excitation', Int.J. Nonlinear Mechanics, Vol. 25, No. 5, pp. 455-474 https://doi.org/10.1016/0020-7462(90)90012-X
  2. Nayfeh, A. H. and Pai, P. F., 1989, 'Nonlinear Non-Planar Parametric Responses of an Inextentional Beam', Int.J. Nonlinear Mechanics, Vol.24, No.2, pp.139-158 https://doi.org/10.1016/0020-7462(89)90005-X
  3. Haigh, E. C. and King, W. W., 1972, 'Stability of Nonlinear Oscillations of an Elastic Rod', J. Acost. Soc. Am.52, pp.899-911 https://doi.org/10.1121/1.1913195
  4. Nayfeh, A.H. and Mook, D.T., 1979, 'Nonlinear Oscillations'
  5. Abraham, R. H. and Shaw, C. D., 1992, 'Dynamics the Geometry of Behavior', 2nd Ed., Addison-Wesley
  6. Blevins, R. D., 1979, 'Formulas for Natural Frequency and Mode Shape', Van Nostrand Reinhold
  7. Cusumano, J. P., 1990, 'Low-dimensional, Chaotic Nonplanar Motions of the Elastica', Ph.D. Thesis, Comell University, New York
  8. Pak, C. H., Rand, R. H, and Moon, F. C., 1992, 'Free Vibrations of a Thin Elastica by Normal Modes', Nonlinear Dynamics, Vol.3, pp. 347-364 https://doi.org/10.1007/BF00045071
  9. M. R. M. Crespo da Silva and C. C. Glynn,. 1978, 'Nonlinear Flexural-Torsional Dynamics of Inextensional Beam-I. Equations of Motion', J. Struct. Mech. 6., pp.437-448 https://doi.org/10.1080/03601217808907348
  10. Y. S. Lee, J. M. Joo and C.H. Pak, 1996, 'On the Chaotic Vibrations of Thin Beams by a Bifurcation Mode', Autumn Annual Conference of Korean Soc. Noise and Vibration Engineering, pp. 121-128